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Improving Forecasts of Generalized Autoregressive Conditional Heteroskedasticity 

with Wavelet Transform 
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Management, East China Institute of Technology, Fuzhou, 344000, China 
 

Abstract: In the study, we discussed the generalized autoregressive conditional heteroskedasticity model and 
enhanced it with wavelet transform to evaluate the daily returns for 1/4/2002-30/12/2011 period in Brent oil market. 
We proposed discrete wavelet transform generalized autoregressive conditional heteroskedasticity model to increase 
the forecasting performance of the generalized autoregressive conditional heteroskedasticity model. Our new 
approach can overcome the defect of generalized autoregressive conditional heteroskedasticity family models which 
can’t describe the detail and partial features of times series and retain the advantages of them at the same time. 
Comparing with the generalized autoregressive conditional heteroskedasticity model, the new approach significantly 
improved forecast results and greatly reduces conditional variances. 
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INTRODUCTION 

 
The GARCH (abbr. Generalized Autoregressive 

Conditional Heteroskedasticity) family models found 
many important and significant characteristics of returns 
in financial assets. These characteristics could be stated 
as the following: heteroscedasticity and volatility 
clustering property (Engle, 1982; Bollerslev, 1986); 
asymmetric relation property (Nelson, 1991)

 
and 

nonlinearity property (Higgens and Bera, 1992; 
Klaassen, 2002). Due to the advancement, GARCH 
family models have rapidly expanded. However, via 
literature review, we found that the GARCH family 
models could better simulate the nonlinear 
characteristics of time series, but it could not describe 
the detail and partial features of time series. Thus they 
lose a lot of information when modeling. In order to 
overcome this shortcoming of GARCH family models, 
we developed DWT-GARCH (abbr. Discrete Wavelet 
Transform GARCH) model by combining discrete 
wavelet transform with GARCH model to predict daily 
returns in Brent oil market.  

Engle designed an ARCH (Abbr. Autoregressive 

Conditional Heteroscedasticity) model to estimate 

conditional variance of inflation sequence of the UK in 

1982. The model assumed that the variance of random 

errors associated with the pre-random error and the 

model included the mean equation and the conditional 

variance equation. Via improving the ARCH model, 

there are a number of improved models, such as 

GARCH   (Bollerslev, 1986),   ARCH-in-mean (Engle 

et al., 1987), exponential GARCH (Nelson, 1991), 

nonlinear ARCH (Higgens and Bera, 1992), threshold 

ARCH (Glosten et al., 1993), dual-threshold GARCH 

(Yang and Chang, 2008). PARCH (Ding et al., 1993), 

long memory GARCH (Ding and Granger, 1996) and 

FIGARCH (abbr. fractional integrated GARCH) (Bailie 

et al., 1996). And vector GARCH are also developed.  

In the applications, there are also lots of researches. 
Korkmaz et al. (2009) used FIGARCH model to test 
long-term memory of stock returns of Istanbul Stock 
Exchange. Their research shows that the market does 
not have weak validity. Liu and Bruce (2009) used the 
family of GARCH models, including ACGARCH 
model (abbr. asymmetric component GARCH), to 
forecast volatility of Hang Seng index. Their research 
shows that the family of GARCH models also shows 
“robustness” when using abnormal distribution data to 
do volatility forecast. Different news has different 
impact on markets. Impact of general news on markets 
is gentle, but some great news will cause sharp jump of 
prices. Das and Sundaram (1999) thought the models’ 
setting will have deviation if not consider characteristic 
of volatility jumping. Chan and Maheu (2002) 
developed GARCH model which can capture the jump 
intensity with time-varying. The model can well 
simulate the price jump. Time series often have 
characteristics of periodicity and seasonality. Kyrtsou 
and Terraza (2003) proposed a GARCH model related 
to a seasonal variable, established a more general 
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Seasonal Mackey-Glass-GARCH model (Kyrtsou, 
2005) and used this model to explain the long-term, 
short-term memories and nonlinear structure of return 
series (Kyrtsou and Terraza, 2010). Racicot et al. (2008) 
used ultra high frequency GARCH model to predict data 
volatility of irregular time intervals. And they compared 
it with the forecast effect of realized volatility model 
(Bollerslev and Wright, 2001). The results show that 
forecast effect has not been improved. So they thought 
that combine artificial neural network with family of 
GARCH model or use spline function before modeling 
to carry on the pretreatment for the data may improve 
the forecast effect. Wang (2009) established a hybrid 
model which has used grey theory, non-linear neural 
network and Glosten-Jagannathan-Runkle GARCH and 
forecasted the stock index options returns in Taiwan 
Futures Exchange.

 
Bildirici and Ersin (2009) combined 

artificial neural networks with GARCH family models 
to establish ANN-GARCH (abbr. artificial neural 
networks GARCH) models and separately use GARCH 
family models and ANN-GARCH models to study 
volatility characteristics of daily return rate in Istanbul 
Stock Exchange. Their results show that only partial 
models’ forecast accuracy of GARCH family model has 
been improved by network learning. Zhao et al. (2010) 
established Multiscale-IGARCH model by combining 
multi-scale analysis with IGARCH model and 
forecasted the China’s soya futures margin.  

 

MODEL AND DATA 

 

DWT-GARCH model: We recorded the daily returns 
as rt (rt = ln(Pt)-ln(Pt-1)) and chose GARCH models to 
predict rt. General GARCH models can only describe 
the overall volatility features of the series, but cannot 
describe partial volatility features of the series and 
multi-scale information. Ignoring partial volatility 
features and multi-scale information of the time series 
will affect the precision of the model. To take advantage 
of prices’ partial volatility features and multi-scale 
information of variables when forecasting, we 
established DWT-GARCH model by combining wavelet 
analysis theory with the GARCH. In accordance with 
the principle of DWT, we decompose rt into different 
time scales, as model (1) shows: 

 

, ,1
j j

J

t A t D t
r r r= + ∑                (1) 

 
where,  

,
j

A t
r  = The approximate part of rt  

,jD t
r = The detail part  

J = The layers of decomposition  
 

According to the principle of multi-scale analysis, 
series in  each  time scale after decomposing are 
orthogonal (• denotes point multiplication between 
vectors), that is:  

0j iA D
r r• = , 0j iD D

r r• =                         (2) 

 

Discrete wavelet expression of model (1) is as follows: 
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where,  

J≤2logN  

k = N/2
j
  

N = The number of sample observations of rt  

Φ(t) = Scaling function  

Ψ(t) = Wavelet function  

‘a’ = Scaling coefficients to capture trend of series rt, 

which can be obtained by the following formula: 

 

, , ( )j k j k ta t r d t= Φ∫               (4) 

 

‘d’ denotes wavelet coefficients, used to capture the 

partial features of series rt, which can be obtained by the 

following formula: 

 

, , ( )j k j k td t r dt= Ψ∫               (5) 

 

Here, 
, ,1

( )j

k

J k J kA
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Let
, , ,j j jA t A t A t

r µ ε= + , 
, , ,j j jD t D t D t

r µ ε= +              (6) 

 

In model (6), suppose the residuals ε Aj,t and  εDj,t 

are independent and: 

 

, , ,j j jA t A t A t
e hε = , 

, , ,j j jD t D t D t
e hε =  

 
Put model (6) into model (1), we get the model (7) 

which is a mean equation of DWT-GARCH (p, q). 
Corresponding variance equations are showed in model 
(8) and model (9): 
 

, , , ,1 1
j j j j

J J

t A t D t A t D t
r µ µ ε ε= + + +∑ ∑              (7) 
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j j j j j j

p q
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h hκ α ε β

− −
= + +∑ ∑  (8) 
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p q

D t D D i D t i D l D t l
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− −
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DWT-GARCH can dig up self-correlation 

characteristics existing in multi-scale, thereby improve 

accuracy for forecasting. Record conditional variances 
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obtained via DWT-GARCH as h_DWT. DWT can 

enhances the prediction accuracy of GARCH models 

and makes predictive value of rt approach the actual 

value. 
In order to compare prediction accuracy of DWT-

GARCH with GARCH, these 2 kinds of models are 
used to conduct empirical research. When modeling 
with approximate series and detail series, we found that 
assumption of t distribution cannot pass the test in most 
cases. Therefore, we supposed the data follow the GED 
distribution. After model debugging, AR-GARCH (1, 1) 
can be written as follows: 
The mean equation is as model (10): 

 

1
( )

n

t i ti
r AR iθ ε

=
= +∑                         (10) 

The conditional variance model is as model (11): 
 

2

1 1t t th hω αε β− −= + +                             (11)   

                                                                       
Data: In dealing with high-frequency data, as density of 
singular point is very large and vanishing moments 
cannot be too high, therefore we chose db5 function to 
do wavelet decomposition. Via repeated test on high-
frequency data about stock prices and returns, Ma et al. 
(2007) suggests the number of decomposition layer be 
no greater than 3 for they have many high-frequency 
components. We set the number of decomposition layer 
as 2. The 3 series obtained by decomposing were 
recorded as a2, d2 and d1. Here, a2 is the approximate 
series; d2 and d1 are detail series. Figure 1 showed the 
results of wavelet decomposition and daily returns for 

 

 
 
Fig. 1: Wavelet decomposition and primary signal of daily 

returns of brent oil 

1/4/2002-30/12/2011 period in Brent oil market. Multi-

scale analysis excavates partial self-correlation feature 

of the series, but this feature cannot be directly observed 

from the original series. As mentioned, the original 

series is equal to the superposition of the 3 series 

obtained from wavelet lifting and there are no 

correlations between the 3 series. Because series after 

transform have significant self-correlation, we need to 

add AR item in the mean equation. Serial self-

correlation is beneficial to improve forecast precision of 

time series. 

 

RESULTS 

 

Table 1 and 2 give the estimation results of AR-
GARCH and AR-DWT-GARCH. In the process of AR-
GARCH (1, 1) parameter estimation of original series, 
R

2   
=   0.0001,  Adj-R

2 
= 0.0001,   S.E.   =   0.0233,   

SSR = 1.3527, Log likelihood = 6036, AIC = -4.8459 
and SC = -4.8342 and HQC = -4.8416. In the process of 
AR-DWT-GARCH   parameter   estimation   of    a2,   
R

2   
=   0.9509,   Adj-R

2   
= 0.9508,   S.E.   = 0.0026,   

SSR = 0.0170, Log likelihood = 12056, AIC = -9.6819, 
SC = -9.6655 and HQC = -9.6759. In the process of AR-
DWT-GARCH parameter estimation of d2, R

2 
= 0.8292, 

Adj-R
2 

= 0.8290, S.E. = 0.0045, SSR = 0.0513, Log 
likelihood = 10335, AIC = -8.3018, SC = -8.2831 and 
HQC = -8.2951. In the process of AR-DWT-GARCH 
parameter     estimation      of    d1,   R

2 
=   0.7641,    

Adj-R
2 
= 0.7638, S.E. =   0.0082,   SSR   =   0.16667,    

  
Table 1: Parametric estimation of the AR-GARCH 

Parameter Coefficient Z-value  Prob. 

AR(3) 0.0339  1.7261 0.0843  
ω 7.29×10-6 2.6523 0.0080  
α 0.0424  5.2099 0.0000  
β 0.9426  81.9112 0.0000  
GED_V 1.4681  25.6727 0.0000  

 
Table 2: Parametric estimation of the AR-DWT-GARCH 

Eqs. Parameter Coefficient Z-value  

a2 

 

 
 

a2_AR (1) 2.4350 118.1642 

a2_AR (2) -2.1358 -56.4578 

a2_AR (3) 0.6578 30.4777 
a2_ω 2.09×10-7 8.3272 

a2_α 0.3761 14.0923 

a2_β 0.5992 30.3991 
a2_GED_V 3.3520 19.1114 

d2 

 
 

 

 

d2_AR (1) 0.9091 81.8700 

d2_AR (2) -1.4265 -106.9146 
d2_AR (3) 0.7101 53.4988 

d2_AR (4) -0.5691 -54.1029 

d2_ω 7.86×10-7 3.5797 
d2_α 0.1753 6.0050 

d2_β 0.8101 29.4602 

d2_GED_V 0.9141 23.6545 
d1 

 

 
 

d1_AR (1) -1.4466 -70.9852 

d1_AR (2) -1.4453 -44.6780 

d1_AR (3) -1.0152 -35.8427 
d1_AR (4) -0.4216 -26.9593 

d1_ω 1.52×10-5 8.9293 

d1_α 0.4013 7.4232 
d1_β 0.3973 8.8436 

d1_GED_V 1.4694 28.3377 
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Fig. 2: Prediction residual of daily returns of brent oil 

 

 
 
Fig. 3: Conditional variance of daily returns of brent oil 

 

Log likelihood = 8714, AIC = -6.9985, SC = -6.9798 

and HQC = -6.9917. Comparing various statistical 

values, we know, fitting precision of AR-DWT-GARCH 

model is higher than AR-GARCH and it uses more 

information in the time series. 

Comparing R
2
, Adj-R

2
, Log likelihood, SE and SSR 

of AR-DWT-GARCH (1, 1) with those of AR-GARCH 

(1, 1), we found that fitting accuracy of AR-DWT-

GARCH (1, 1) model is much better than AR-GARCH 

(1, 1) model. Values of AIC, SC and HQC showed that 

AR-DWT-GARCH (1, 1) model could excavate richer 

information from primary signal of daily returns than 

AR-GARCH (1, 1) model. Record rt obtains from the 

forecast which are based on DWT-GARCH and the 

GARCH as rt1 and rt2 respectively. Record conditional 

variances obtain from DWT-GARCH and GARCH as 

h_DWT and h. Figure 2 showed the differences of 

original value rt and predictive value rt1 and rt2 

respectively, which were recorded as rt- rt1 and rt- rt2. 

Prediction results in Fig. 2 showed that forecasting 

result of DWT-GARCH model was more precise. The 

smaller the conditional variance is, the better the 

forecast is. Figure 3 showed the values of conditional 

variance estimated by GARCH model and DWT-

GARCH model. DWT-GARCH model had obvious 

advantages in forecasting the daily returns as shown.    
 

CONCLUSION 
 

In the study, we analyzed and combined GARCH 

with wavelet transform models. The main aim of the 

study is to augment the forecasting power of DWT-

GARCH. Our results show that the GARCH family 

models combining with wavelet transform theory may 

be more powerful when forecasting the daily returns. It 

can not only describe the detail and partial features of 

volatility series, but also describe the heteroscedasticity, 

volatility clustering property, asymmetric relation 

property and nonlinearity property of volatility series. 

The DWT-GARCH model maintains approximate parts 

of the original series and captures the detail parts of 

volatility series at the same time. Via wavelet lifting, 

DWT-GARCH can dig up self-correlation 

characteristics existing in multi-scale, thereby improve 

forecast accuracy. These advantages make forecast 

accuracy of DWT-GARCH model higher than GARCH. 
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