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Abstract: In this study, we define X-domatic partition of a bipartite graph. X-domatic number of a unicyclic graph 
is less than or equal to 3 is proved. Nordhaus Gaddum type of results involving X-domatic number are obtained and 

the graphs for which dx(G) + dx(G� ) = 2P, dx(G) + dx(G� ) = 2P - 1, are characterized. 
 
Keywords:  X-domatic partition, X-dominating set, Y-dominating set 

 
INTRODUCTION 

 
Graph colouring and domination in graphs are two 

areas within graph theory which have been extensively 
studied. Graph coloring partitions the set of objects into 
classes according to certain rules. Similar to the concept 
of chromatic partition, (Cockayne and Hedetniemi, 
1977) introduced the concept of domatic partition of a 
graph. The idea of k-rainbow domatic number was 
introduced by Sheikholeslami and Volkmann (2012). 
The concept X-domatic partition of a bipartite graph is 
an extension of the concept of domatic partition of a 
graph. 

Let G be a graph. A subset S of V is a dominating 
set of G if for every v ∈ V- S there exists a vertex u∈ S 
such that u and v are adjacent. The minimum 
cardinality of a dominating set is called the domination 
number of G and is denoted by γ(G). A partition {V1, 
V2,⋯, Vn}of  V is a domatic partition of G if every Vi is 
a dominating set. The maximum order of a domatic 
partition of G is called the domatic number of G and is 
denoted by d(G). For further details on domatic 
number, the reader is referred to the paper on domatic 
number of graphs by Zelinka (1981). 

We shall consider only connected bipartite graphs 
with bipartition (X, Y) where |X| = P; |Y| = q

 
and have 

no loops and multiple edges. Bipartite theory of graphs 
was proposed by Stephen and Renu (1986 a, b) in 
which concepts in graph theory have equivalent 
formulations as concepts for bipartite graphs. One such 
reformulation is the concept of X-dominating and Y-
dominating set. 

Two vertices u, v ∈ X are X-adjacent if they are 
adjacent to a common vertex in Y. A subset D of X is 
an X-dominating set if every vertex in X - D is X-
adjacent to at least one vertex in D. The minimum 
cardinality of a X-dominating is called the X-
domination number of G and is denoted by γX(G). If x 

∈X, then the X-degree of x is defined to be the number 

of vertices in X which are X-adjacent to x  and is 

denoted by dy(x). Let δY(G) = min{dY(x)∶ x ∈ X}. 
 

Proposition 1: γx(Cl ) = [
�

�
] for every l ≥4, l ≡ 0, 2, 4, 

(mod 6). 
A subset S ⊆ X which dominates all vertices in Y 

is called a Y-dominating set of G. The Y-domination 
number denoted by γY(G) is the minimum cardinality of 
a Y-dominating set of G. 

Vertices u, v, w
 
are adjacent to a vertex y ∈ Y, we 

say that the vertices u, v, w are X-adjacent through 
same y ∈ Y. If the vertices u, w are adjacent to y1 ∈ Y

 
and u, v are adjacent to y2 ∈ Y, we say that the vertices 

u, v, w are X-adjacent through different Yy∈ . A 

bipartite graph G is said to be X-complete if every 
vertex in X(G) is X-adjacent to every other vertex in X 
(G). 
  
X-domatic partition of a graph:  An X-domatic 

partition of G is a partition of X, all of whose elements 

are X-dominating sets in G. The X-domatic number of 

G is the maximum number of classes of an X-domatic 

partition of G. The X-domatic number of a graph G is 

denoted by dx(G). 

 

Remark 1: Since {X}
 
itself is a X-domatic partition of 

G , the existence of a X-domatic partition is guaranteed 

for any bipartite graph and so the parameter dx(G) is 

well defined. Further, obviously 1≤dx (G) ≤P
 
for any 

bipartite graph. 

The X-domatic number of a bipartite graph is 

analogous to the concept of domatic number of an 

arbitrary graph. For more information on the 

domination number and on the domatic number and 

their invariants, the reader is referred to survey book by 
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Haynes et al. (1998) and Zelinka (1988). 

 

Theorem 1: In any graph G, γx(G) + dx G) ≤P + 1. 

 

Proof: If γx(G) = 1
 
then γx(G) + dx(G) ≤P + 1. If γx(G) 

= k (k≥2) then the remaining P-k vertices of X can be 

X-dominating sets and hence, dx(G) ≤P - k + 1. 

Therefore, γx(G) + dx(G) ≤P + 1. 

 

Lemma 1: In any graph G, dx(G) ≤1 + δY(G). 

 

Proof: Let x ∈ X be a vertex with minimum X-degree. 

Suppose dx(G) >1 + δY(G). Since x has at least (dx(G) - 

1) X-neighbours in X, dY(x) ≥(dx (G) - 1) >δY(G), a 

contradiction. Therefore, dx(G) ≤1 + δY(G). 

 

Theorem 2: If G is a connected unicyclic graph then dx 

(G) ≤3.  

 

Proof: Since G is unicyclic, G contains a unique even 

cycle C2n, where n is even. Let G = C2n. We note that 

dx(C6) = 3 and dx(C4) = 2. Also, γx(Cl) = [
�

�
] for every 

l≥4, l ≡ 0, 2, 4 (mod6). Therefore, γx(Cl) ≥ 
�

�
. Hence, 

dx(G) ≤
�

��
 ≤ 3.  

In case G ≠ C2n, then G has a pendant vertex and 

therefore dx (G) ≤1 + δY(G) = 2. 

 

Corollary 1:  For  a connected unicyclic graph G, 

dx(G) = 3 if and only if G = C2n 
where |X| ≡ 0(mod3). 

 

Proof: Assume dx(G) = 3. When |X| ≤2, G will have a 

vertex of full X-degree implying dx(G) = 2, a 

contradiction. Hence, |X| ≥3. G Cannot have a pendent 

X-vertex since in that case dx(G) ≤2. Hence, G = C2n. 

Since γx(Cl) = [
�

�
] for every l≥4, l ≡ 0, 2, 4 (mod 6) and 

dx(G) = 3, |X| is a multiple of 3. 

Conversely, if |X| ≡ 0 (mod 3) and G = C2n 
where 

X = {x1, x2, ⋯, x3n} and Y = {y1, y2, ⋯, y3n}. The sets 

X1 = {x1, x4 ,⋯ } , X2 = {x2, x5 ,⋯ } and X3 = {x3, x6, ⋯ 

}
 
form three γx

_

 
sets and hence, dx(G) = 3. 

 

Corollary 2: If G is a connected unicyclic graph with 

|X| ≥3, then dx(G) = 2 if and only if G ≠ C2n 
where |X| 

≡ 0 (mod 3). 

 

Proof: Let dx(G) = 2 and |X| ≥3. By the above 

corollary G ≠ C2n 
where |X| ≡ 0 (mod 3). Conversely, 

let G ≠ C2n where |X| ≡ 0 (mod 3). Since G is 

unicyclic, dx(G) ≤3. dx(G) cannot be three by the above 

corollary and dx(G) cannot be 1. Therefore, dx(G) = 2. It 

is easy to prove the following. 

Proposition 2: In any graph G, dx(G) = P
 
if and only if 

G is X-complete. 

Now we define the complement of a bipartite as 

defined by Sampathkumar and Pusphalatha (1989). Let 

G = (X, Y, E) be a bipartite graph. We define the 

complement of G denoted by G� = (X, Y, F) as follows:  

 

• No two vertices in X are adjacent 

• No two vertices in Y are adjacent 

• x ∈ X  and y ∈ Y
 
are adjacent in G� if and only if x 

∈ X and y ∈ Y are not adjacent in G 

 

Proposition 3: In any graph G, dx(G�) = P
 
if and only if 

for every u, v ∈ X, there exists y ∈ Y
 
such that y

 
is not 

adjacent to u, v in G. 

 

Proof: Let dx(G�) = P. Every vertex in G� is X-adjacent to 

all other vertices. There exists y ∈ Y
 
such that u and v 

are adjacent to y ∈ Y
 
in G�. Then, y ∈ Y

 
is not adjacent 

to u and v are in G. 

Conversely, suppose that for every u, v ∈ X, there 

exists y ∈ Y
 
such that y

 
is not adjacent to u, v in G. 

Then y
 
is adjacent to u, v in G�. Hence, u and v are X-

adjacent in G�. Hence, dx(G�) = P. 

 

NORDHAUS-GADDUM TYPE RESULTS 
 

Nordhaus-Gaddum type theorem establish bounds 

on θ(G) + θ(G�) for some parameter θ, where G� is the 

complement of G. Several Nordhaus-Gaddum type 

theorems were characterized for various domination 

parameters, some are rainbow vertex-connection 

number (Chen and Memngmeng, 2011) of a graph, 

rainbow connection number (Chen et al., 2010) of 

graphs  and  k-rainbow   domatic   number  (Meierling 

et al., 2011 ) of a graph. Here we characterize graphs 

for which dx(G) + dx(G�) equal to 2P
 

and 2P-1. To 

characterize the graphs attaining the bounds, we define 

the following family of graphs. 

Λ is the family of graphs such that every vertex in 

X is of X-degree P-1 and for any two vertices u and v in 

X, there exists y ∈ Y
 
such that u and v are not adjacent 

to y. 

Λ1 
is the family of graphs with a vertex in Y of 

degree |X| and a unique γY-set of cardinality 2. 

Λ2 is the family of graph with |X| = 2 and at least 

one vertex in X and Y is of full degree. 

 

Theorem 3: In any graph G, dx(G) + dx(G�) = 2P
 
if and 

only if G ∈ Λ. 

 

Proof:  If  dx(G) + dx(G�) = 2P
   

then  dx(G) = P
 
and 

dx(G�) = P. By proposition 2, we get every vertex in X is 



 

 

Res. J. Appl. Sci. Eng. Technol., 5(2): 646-648, 2013 

 

648 

of X-degree (P-1). Conversely, suppose that for every 

u, v ∈ X, there exists y ∈ Y
 
such that y

 
is not adjacent 

to u, v in G. Then y
 
is adjacent to u, v in G�. Hence, u 

and v are X-adjacent in G�. Hence, dx(G�) = P. Converse 

is obvious. 

 
Theorem 4: Let G be a graph with |X| ≥3. Then dx(G) 

+ dx(G�) = 2P-1
 
if and only if either G or G� is in {Λ1, 

Λ2}. 
 

Proof: Let G ∈ {Λ1, Λ2}.  Clearly, dx(G) = P, dx(G�) = P 

- 1. Hence, dx(G) + dx(G�) = 2P-1.  If G�  ∈ {Λ1, Λ2}, then 

dx(G) = P-1  and  dx(G�) = P.  Hence,   dx(G) + dx(G�) = 
2P-1. 

Let dx(G) + dx(G�) = 2P-1. The possibilities are:  
 

• 
dx(G) = P

 
and dx(G�) = P-1

 
• dx(G) = P-1

 
 and dx(G�) = P

 
 

 

Case 1: Let dx(G) = P
 
and dx(G�) = P-1. 

If dx(G) = P, every vertex in X is of X-degree P-1. If 
every vertex in X is of X-adjacent to other vertices 

through different y ∈ Y, then dx(G�) = P, a contradiction. 
Therefore, there exists a vertex y ∈ Y

 
of full degree. 

 
Claim: γY(G) ≤2. 

Suppose, γY(G) ≥3. Then any subset of X of 
cardinality 2 is not a Y-dominating set of G. Therefore, 
if u, v ∈ X, then there exists y ∈ Y

 
such that u and v are 

not adjacent with y. Hence, u and v are X-adjacent in G� 

and  so  dx(G�) = P ≠ P-1,  a  contradiction. Hence, 
γY(G) ≤2. 
 
Sub case 1: If γY(G) = 1, then a vertex in X is of full 

degree. Therefore, dx(G�) = 1 = P-1. Hence, P = 2. 
Therefore, G ∈ Λ2. 

 

Sub case 2: γY(G) ≤2. 

Let S1 = {u1, u2} 
be a γY-set of G. 

 

Claim: u1 
and u2 

are not X-adjacent in G�. 

Suppose u1 
and u2 are X-adjacent in G�. Then there 

exists y ∈ Y (G�) such that u1 and u2 are adjacent with y 

∈ Y (G�). Therefore, u1 
and u2 

are not adjacent with y
 
in 

G. Hence, y is not dominated by u1 
and u2 in G, a 

contradiction. 
 
Claim: The existence of γY-set is unique in G. 

Let S1 and S2 
be two minimum Y-dominating sets 

of G. Let S1 = {u1, u2} and S2 = {u3, u4}. Therefore, u1 

and u2 
are not X-adjacent in G�. Similarly u3 and u4 are 

not X-adjacent in G�. If u1, u2, u3 and u4 
are all distinct, 

then {u1}, {u2}, {u3}, {u4} are all non X-dominating set 

in G�. Therefore, dx(G�) ≤P-2, a contradiction. Let S1 and 

S2 have a common vertex. Let u2 = u4. Then {u1}, {u2}, 

{u3} are all non X-dominating set in G�. Therefore, dx(G�) 

≤P-2, a  contradiction. Therefore, γY-sets of  cardinality 

2  in G is unique. Therefore, G ∈ Λ1. 

 

Case 2: Let dx(G) = P-1
 
and dx(G�) = P.  

Using the above argument, we get G� is in {Λ1, Λ2}. 
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