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Abstract: By utilizing a CAN (Controller Area Network) bus, point to point wiring is substituted by a shared 
medium. This is done by adding hardware (embedded systems) to each control unit that uses CAN protocol. The 
main purpose of this study is communication software protocol design and implementation based on CAN protocol 
(on CAN) for intra-communication in a micro satellite that can be used for intra-communication of other embedded 
systems. This protocol is designed in the application layer and is conformed to MAC and PHY layers of CAN 
protocol. 
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INTRODUCTION 

 
By utilizing CAN (Controller Area Network) bus, 

point to point wiring is substituted by a serial bus and 
the electronic equipment is connected together by a 
shared medium (Zuberi et al., 1997, 2000; Dorbin and 
Fohler, 2001). This is done by adding hardware 
(embedded systems) to each control unit which is 
conformed to CAN protocol. This hardware gives us 
the rules or protocols needed for sending to and 
receiving information from bus. In fact, for connecting 
each unit to the network, we need hardware similar to 
CAN network nodes. These nodes act as the interface 
between  each  electronic unit and bus network (Nolte 
et al., 2003). On these nodes, the entire stack of CAN 
protocol is implemented. A part of this stack, called 
Physical layer (PHY), is assumed as the hardware and 
the other parts, calling MAC and the application layer 
are assumed as the software and these parts are 
implemented on this platform. CAN protocol have 4 
main and important advantages (Jaman and Hussain,  
2007;  Marino  and  Schmalzel,  2007; Bago et al., 
2007; Murtaza and Khan, 2008):  

 

• CAN protocol as a global standard can support 
communication into various embedded systems and 
generally hardware which has the capability of 
communication by CAN bus and protocol. 

• Communication and information transfer workload 
in each network node of host processor is 
transferred to an intelligent peripheral 
communication    device,   therefore,    CAN    host  
controller processor have more time for 
accomplishing its system task.  

• As a shared network, CAN decrease the needed 
amount of wiring and omits point to point wiring.  
 
As a standard protocol, CAN possess a great 

demand in market. This creates a motivation for semi-

conductors and chips manufacturers to produce goods 

of reasonable prices. 

Access mechanism to bus in CAN protocol is 

CSMA/CD-A (Carrier Sense Multiple Access with 

Collision Detection) and the type of nodes in bus is 

master/slave. This protocol also supports multi-master 

capability (Ziermann et al., 2009; Chen and Tian, 

2009). 

In this study, a customized reliable and application 

specific Controller Area Network protocol design for 

intra-communication of an embedded system such a 

micro satellite is introduced (standard CAN protocol for 

these application is very comprehensive and It’s usage 

has many overheads). Some of the requirements of this 

protocol are as follows: 

 

• The protocol should have the capability of being 

implemented on all of satellite subsystems.  

• The user should be able to send the desired number 

of bytes.  

• The user’s interface with protocol should be easy 

and reliable. A multi-thread replica should be 

designed   for   the    satellite   Command   and  

Data Handling subsystem (C&DH) board. For all 

of subsystems there should be a single-thread 

replica. 
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Fig. 1: System protocol total architecture 

 

 

 

 

 

 

 

 

 

 
Fig. 2: CAN node structure 

 

One of the other requirements is that the protocol 

should be able to be implemented on all micro satellite 

subsystems. The multi-thread replica should only be 

implemented on C&DH board. In this architecture, 

there exist two kinds of subsystems. One of them is 

related to C&DH which utilizes MPC555 micro-

controller and uC/OS-II operating system. The other 

kind is related to other subsystems (the satellite consists 

of several subsystems) that exploits AT90CAN128 

micro-controller. The difference between these two is 

the sub-layers of the protocol architecture.  

The reason for this difference is that C&DH is 

multi-tasks and utilizes operating system, whereas other 

subsystems are single-task and are without operating 

systems. The total architecture of the system protocol is 

shown in Fig. 1. 

 

CAN bus: CAN bus is the interface shared channel of 

satellite subsystems. CAN bus is designed to cause 

interaction of micro-controllers with each other without 

a central controller.  

This feature is useful for some of the embedded 

systems in which there exists no central processor for 

controlling the interactions. 

For this reason, this bus is useful in embedded 

systems (like car industries) (Chen and Tian, 2009). 

Communication technology: CAN bus is a 

broadcasting bus. Therefore, all of the nodes connected 

to the bus, receive the sent messages. Each message 

contains a header (Zuberi et al., 2000; Dorbin and 

Fohler., 2001).  

If each CAN node receives all of the sent messages 

on bus, there should be a mechanism to determine 

which packet is accepted and which one is rejected. 

Each node consists of three components (Fig. 2) (Zeng 

et al., 2009; Aysan et al., 2010a; Zhu et al., 2010).  

 

Main processor: It determines what message to be 

sent, which message to be accepted and which one to be 

rejected. The processor performs this action through bit 

filters. This filter is placed on CAN packet 

identification field.  

 

CAN controller: It saves the received bits till all of the 

messages are received and then it sends a signal to the 

main processor to inform about packet receiving. On 

the other hand, if it receives a message from the main 

processor, it sends this message as a serial through 

CAN transceiver on bus. 

 

CAN transceiver: At the time of receiving, CAN 

transceiver converts bus voltages to interpretable bits 

for controller and at the time of sending, it converts bits 

to the corresponding voltage level and sends them on 

the bus. CAN bus can operate with several bit rates. For 

embedded  media  that  the coverage is not more than 

40 m, CAN bus can operate with 1 Mbps. However, if 

the coverage is more, lower bit rates (e.g., 500, 250 and 

125 kbps) should be utilized (Zuberi et al., 2000; 

Dorbin and Fohler, 2001). 

 

Frames: CAN bus can be configured to work with two 

kinds of different frames; standard frame and extended 

frame (Aysan et al., 2010a, b; Zhu et al., 2010; 

Umamaheswaran and Nagendra, 2009). The only 

difference is that the standard frame utilizes 11 bit 

frame identification; however, the extended frame 

utilizes 29 bits identification. The structure of the 

standard and the extended frames are shown in Table 1 

and 2. 

The identification field consists of some controller 
and application information. As it was mentioned 
before, mask filter is adjusted on this field.  

The RTR (Remote Transmission Request) field is 

set to 1 if it is determined to send a remote frame. DLC 

field specifies the entire data byte. CRC field is utilized 

to check frame sending failure. ACK field determines if 

the frame is correctly received. 

Application 

CAN protocol 

CAN driver 

CAN controller 

CAN Bus 

Host processor 

CAN controller  

CAN transceiver 

CAN Bus 
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Table 1: Standard frame format 

ID RTR DLC Data CRC ACK 

11 bit 1 bit 4 bit (8*n) bit 15 bit 1 bit 

 
Table 2: Extended frame format 

ID RTR DLC Data CRC ACK 

29 bit 1 bit 4 bit (8*n) bit 15 bit 1 bit 

 
Table 3: The extended frame identification format 

Priority Src Dst Last seg NU Type Seq no NU 

2 4 4 1 3 8 6 1 

 

THE PROPOSED CAN PROTOCOL FOR A 
SAMPLE MICRO SATELLITE 

 
In this section, the responding attitude towards the 

mentioned requirements in the previous section and 
also the protocol operation in different situations are 
analyzed. 
 
Message format: In this protocol, the extended frame 
is utilized. The identification field format of this frame 
is shown in Table 3. 
 
Priority: This field specifies the priority of CAN 
frame. 00 and 11 have the most and least frame priority, 
respectively.  
 
Srs: This field consists of source subsystem address. 
 
Dst: This field consists of destination subsystem 
address. 
 
Last seg: If this field is 1, it means that the received 
frame is the last segment of segment sets of a 
transaction. 
 
NU: This field is not utilized and it can be used in later 
development or allocating more bits to source and 
destination addresses.  
 
Type: This single-bit field specifies the kind of frame. 

Four most significant bits (ACK, NAK, REQ and 

DATA) specify the frame type and four least significant 

bits specify the frame sub-types. 
In order to decrease the length of Type field, the 

kind of the frame is determined with regarding to the 
destination subsystem. For example, if this field is 0×11 
and the address is Power subsystem frame, it indicates 
SET_SWITCH command. However, if the frame’s 
destination address is Attitude Determination and 
Control Subsystem (ADCS), it indicates 
SET_ACTIVE_DATA command. 
 
Seg no: Each CAN frame is able to transfer up to 8 

bytes,  therefore,  in  case   the  transmitted  packet  data 

length is   more   than 8 bytes,  segmentation   operation  

 
 

Fig. 3: Segment sequence number application 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: Satellite communication infrastructure  

ADCS: Attitude determination and control subsystem; 
Telecmd: Telemetry and telecomand; C&DH: 
command and data handling 

 

should be performed. This field shows the segmentation 

number related to each transaction. 

The purpose of this field is assuring to receive all 

of the segmentations. If each segmentation is failed due 

to any reason, the receiver is able to specify the 

occurred failure by the next segmentation number and 

informs the sender about the occurred failure by 

sending NAK frame in the transaction to have a second 

sending. Figure 3, shows this mechanism. 

 

Communication with subsystems: Figure 4 shows 

satellite communication sub-structure. The entire 

structure of the satellite is master/slave; i.e., C&DH 

firstly sends a command to each subsystem and the 

subsystem after performing the command sends back 

the suitable response to C&DH. 
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Fig. 5: State machine of type 1 transaction in C&DH 

 

In this protocol, three kinds of transactions are 

considered and each of them is described in the 

following sections.  
 

Sending data to subsystem (type 1): In these 

transactions, C&DH sends a command as well as the 

required data for performing the command to 

subsystem. 

For example, SET_SWITCH command, that is 

connected to power subsystem is one f them.  

The state machine of these transactions is shown in 

Fig. 5. After initial performing, the state machine is 

firstly placed in idle state. Afterwards, by calling the 

related function, the first segment which consists of 

command and data is constructed and waits for the 

grant to use bus and frame sending. 

In case the sending grant is not received before the 

previous allocated time, timeout failure occurs and 

transaction will be finished. After sending the next 

segments (i.e., data), like what was mentioned, the state 

machine is transferred to wait state for response and 

will wait to receive response from subsystem. If the 

response is not received in the specified time, timeout 

failure happens. Otherwise, the transaction will be 

finished by receiving the response and the state 

machine turns back to the idle state. 

 

Data receiving from subsystem (type 2): In this 

transaction, C&DH demands receiving data by sending 

a command subsystem. One example of this transaction 

starts by GET_SENSOR_DATA command. 

By function call, the transaction is started and the 

state machine is transferred to wait state for grant and 

waits to be allowed to use CAN bus. In case, the grant 

is not sent in the specified time, the transaction 

encounters timeout failure. 
After sending the command, C&DH waits for 

receiving the first segment. After receiving the first 
segment, if the LS field is 1, it means that this segment 
is the last segment of the current transaction and the 
packet is produced and turned back as the output 
function. Otherwise, the related task in C&DH waits for 
receiving the next segments. After receiving each 
segment, the number of the segment is checked and if it 
is not correspondent with the desired amount, OOR 
(Out of Order) failure is produced. Finally after 
receiving the last segment, the machine turns back to 
the idle state. This transaction is shown in Fig. 6.  
 
Sending single-command to subsystem (type 3): The 

purpose of this transaction is sending a command by 

C&DH to subsystem in a way that there is no need to 

have data. For example, START_SEND command in 

Payload subsystem is such a transaction. This 

transaction is similar to type 1 transaction, by this 

difference that it is without data for sending. This 

transaction type is shown in Fig. 7. 
 

EXPERIMENTAL RESULTS 
 

For testing this protocol, the information packet 

should be transferred through communication bus. In 

order to do this, firstly, it is needed to test CAN bus 

driver.  
 
Testing CAN drive: The utilized microprocessors for 

communication are MPC555 microprocessor (C&DH 

processor) and AT90CAN128 microprocessor 

(Subsystem processor). The suitable driver is 

seg: Segment

trans: Transaction

rsp:     Response

LS: Last Segment

TO:      Time Out

rcvd:    Received
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Fig. 6: State machine of type 2 transaction in C&DH 

 

 
 

Fig. 7: State machine of type 2 transaction in C&DH 

 
customized for them. In order to do this, PCAN-USB 

tool is utilized. This tool is an adapter that prepares the 

ability of connecting the computer to CAN bus by USB.  

Beside this tool, there exists an interface application 

software, that CAN bus sending rate can be adjusted by 

it. Moreover, CAN frames can be produced periodically 

and with desired field amounts and can be sent onto 

bus. On the other hand, all of the transferred frames 

onto bus can be monitored and their contents can be 

observed by this tool.  

The testing procedure is that CAN bus sending rate 
is adjusted equally between the tested node (that in one 
state is C&DH node and the other state is a node related 
to one of the subsystems) and PCAN tool. Then in one 
step, the tested node is considered to be the sender and 
PCAN node is the receiver. In the other step, PCAN 
node is considered to be the sender and the tested node 
is the receiver. In both steps, the correctness of sending 
and receiving CAN frame is tested. Therefore, it can be 
assured about the accuracy of CAN driver’s entire 
operation.  

seg: Segment

trans: Transaction

LS: Last Segment

TO:      Time Out

rcvd:    Received

OOR:    Out of Order

trans: Transaction

TO:      Time Out

rcvd:    Received

rsp:       Response
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Table 4: Insertion the present protocol in some communication function 

Function name 

Response normal  

time (ms) 

Send data capacity 

(byte) 

Receive data capacity 

(byte) Timeout time (ms) 

thermal-get-data 20 4 80 40 
adcs-get-data 20 4 60 40 

adcs-send-data 5 20 4 10 

pw-get-data 4 4 32 8 
pw-set-switch 5 8 4 10 

 

Proposed CAN protocol testing: After testing CAN 

driver’s operation, CAN protocol should be tested. For 

testing the protocol, two subsystem testing nodes are 

utilized, i.e., C&DH and PCAN tool nodes to monitor 

traffic on bus. These nodes are connected to CAN bus 

by DB9 connector and based on CiA standard. Then 

each mentioned transaction should be tested accurately 

and under different situations (like creating timeout or 

out of order situations) to be assured about their 

operations.  

Table 4 shows an example of the results obtained 

from these operations. As it can be seen, the suggested 

protocol can fulfill deadlines for different information 

packets. 

 

CONCLUSION 

 
CAN bus that is formed based on CAN 

communication protocol, is a useful communication bus 
especially for embedded systems and it covers great 
area of application. In specific application, CAN 
protocol headers can be omitted by a flexible design 
presentation. Based on this attitude, in this paper, a 
customized protocol based on CAN protocol is 
designed and implemented for intra-communication of 
satellites and it is very light and has a high reliability. 
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