
Research Journal of Applied Sciences, Engineering and Technology 5(2): 445-451, 2013

DOI:10.19026/rjaset.5.4971

ISSN: 2040-7459; E-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: May 06, 2012 Accepted: June 15, 2012 Published: January 11, 2013

Corresponding Author: Hassan Taheri, Electrical Engineering Department, AmirKabir University of Technology, Tehran, Iran
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

445

Research Article
Designing a Reliable and Application Specific Controller Area Network Protocol for

Intra-Communication of an Embedded System

1
Seyyed Amir Asghari,

2
Hassan Taheri and

1
Hossein Pedram

1
Computer Engineering and Information Technology Department,

2
Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran

Abstract: By utilizing a CAN (Controller Area Network) bus, point to point wiring is substituted by a shared
medium. This is done by adding hardware (embedded systems) to each control unit that uses CAN protocol. The
main purpose of this study is communication software protocol design and implementation based on CAN protocol
(on CAN) for intra-communication in a micro satellite that can be used for intra-communication of other embedded
systems. This protocol is designed in the application layer and is conformed to MAC and PHY layers of CAN
protocol.

Keywords: CAN protocol, communication software, embedded system, micro satellite

INTRODUCTION

By utilizing CAN (Controller Area Network) bus,

point to point wiring is substituted by a serial bus and
the electronic equipment is connected together by a
shared medium (Zuberi et al., 1997, 2000; Dorbin and
Fohler, 2001). This is done by adding hardware
(embedded systems) to each control unit which is
conformed to CAN protocol. This hardware gives us
the rules or protocols needed for sending to and
receiving information from bus. In fact, for connecting
each unit to the network, we need hardware similar to
CAN network nodes. These nodes act as the interface
between each electronic unit and bus network (Nolte
et al., 2003). On these nodes, the entire stack of CAN
protocol is implemented. A part of this stack, called
Physical layer (PHY), is assumed as the hardware and
the other parts, calling MAC and the application layer
are assumed as the software and these parts are
implemented on this platform. CAN protocol have 4
main and important advantages (Jaman and Hussain,
2007; Marino and Schmalzel, 2007; Bago et al.,
2007; Murtaza and Khan, 2008):

• CAN protocol as a global standard can support
communication into various embedded systems and
generally hardware which has the capability of
communication by CAN bus and protocol.

• Communication and information transfer workload
in each network node of host processor is
transferred to an intelligent peripheral
communication device, therefore, CAN host
controller processor have more time for
accomplishing its system task.

• As a shared network, CAN decrease the needed
amount of wiring and omits point to point wiring.

As a standard protocol, CAN possess a great

demand in market. This creates a motivation for semi-

conductors and chips manufacturers to produce goods

of reasonable prices.

Access mechanism to bus in CAN protocol is

CSMA/CD-A (Carrier Sense Multiple Access with

Collision Detection) and the type of nodes in bus is

master/slave. This protocol also supports multi-master

capability (Ziermann et al., 2009; Chen and Tian,

2009).

In this study, a customized reliable and application

specific Controller Area Network protocol design for

intra-communication of an embedded system such a

micro satellite is introduced (standard CAN protocol for

these application is very comprehensive and It’s usage

has many overheads). Some of the requirements of this

protocol are as follows:

• The protocol should have the capability of being

implemented on all of satellite subsystems.

• The user should be able to send the desired number

of bytes.

• The user’s interface with protocol should be easy

and reliable. A multi-thread replica should be

designed for the satellite Command and

Data Handling subsystem (C&DH) board. For all

of subsystems there should be a single-thread

replica.

Res. J. Appl. Sci. Eng. Technol., 5(2): 445-451, 2013

446

Fig. 1: System protocol total architecture

Fig. 2: CAN node structure

One of the other requirements is that the protocol

should be able to be implemented on all micro satellite

subsystems. The multi-thread replica should only be

implemented on C&DH board. In this architecture,

there exist two kinds of subsystems. One of them is

related to C&DH which utilizes MPC555 micro-

controller and uC/OS-II operating system. The other

kind is related to other subsystems (the satellite consists

of several subsystems) that exploits AT90CAN128

micro-controller. The difference between these two is

the sub-layers of the protocol architecture.

The reason for this difference is that C&DH is

multi-tasks and utilizes operating system, whereas other

subsystems are single-task and are without operating

systems. The total architecture of the system protocol is

shown in Fig. 1.

CAN bus: CAN bus is the interface shared channel of

satellite subsystems. CAN bus is designed to cause

interaction of micro-controllers with each other without

a central controller.

This feature is useful for some of the embedded

systems in which there exists no central processor for

controlling the interactions.

For this reason, this bus is useful in embedded

systems (like car industries) (Chen and Tian, 2009).

Communication technology: CAN bus is a

broadcasting bus. Therefore, all of the nodes connected

to the bus, receive the sent messages. Each message

contains a header (Zuberi et al., 2000; Dorbin and

Fohler., 2001).

If each CAN node receives all of the sent messages

on bus, there should be a mechanism to determine

which packet is accepted and which one is rejected.

Each node consists of three components (Fig. 2) (Zeng

et al., 2009; Aysan et al., 2010a; Zhu et al., 2010).

Main processor: It determines what message to be

sent, which message to be accepted and which one to be

rejected. The processor performs this action through bit

filters. This filter is placed on CAN packet

identification field.

CAN controller: It saves the received bits till all of the

messages are received and then it sends a signal to the

main processor to inform about packet receiving. On

the other hand, if it receives a message from the main

processor, it sends this message as a serial through

CAN transceiver on bus.

CAN transceiver: At the time of receiving, CAN

transceiver converts bus voltages to interpretable bits

for controller and at the time of sending, it converts bits

to the corresponding voltage level and sends them on

the bus. CAN bus can operate with several bit rates. For

embedded media that the coverage is not more than

40 m, CAN bus can operate with 1 Mbps. However, if

the coverage is more, lower bit rates (e.g., 500, 250 and

125 kbps) should be utilized (Zuberi et al., 2000;

Dorbin and Fohler, 2001).

Frames: CAN bus can be configured to work with two

kinds of different frames; standard frame and extended

frame (Aysan et al., 2010a, b; Zhu et al., 2010;

Umamaheswaran and Nagendra, 2009). The only

difference is that the standard frame utilizes 11 bit

frame identification; however, the extended frame

utilizes 29 bits identification. The structure of the

standard and the extended frames are shown in Table 1

and 2.

The identification field consists of some controller
and application information. As it was mentioned
before, mask filter is adjusted on this field.

The RTR (Remote Transmission Request) field is

set to 1 if it is determined to send a remote frame. DLC

field specifies the entire data byte. CRC field is utilized

to check frame sending failure. ACK field determines if

the frame is correctly received.

Application

CAN protocol

CAN driver

CAN controller

CAN Bus

Host processor

CAN controller

CAN transceiver

CAN Bus

Res. J. Appl. Sci. Eng. Technol., 5(2): 445-451, 2013

447

Table 1: Standard frame format

ID RTR DLC Data CRC ACK

11 bit 1 bit 4 bit (8*n) bit 15 bit 1 bit

Table 2: Extended frame format

ID RTR DLC Data CRC ACK

29 bit 1 bit 4 bit (8*n) bit 15 bit 1 bit

Table 3: The extended frame identification format

Priority Src Dst Last seg NU Type Seq no NU

2 4 4 1 3 8 6 1

THE PROPOSED CAN PROTOCOL FOR A
SAMPLE MICRO SATELLITE

In this section, the responding attitude towards the

mentioned requirements in the previous section and
also the protocol operation in different situations are
analyzed.

Message format: In this protocol, the extended frame
is utilized. The identification field format of this frame
is shown in Table 3.

Priority: This field specifies the priority of CAN
frame. 00 and 11 have the most and least frame priority,
respectively.

Srs: This field consists of source subsystem address.

Dst: This field consists of destination subsystem
address.

Last seg: If this field is 1, it means that the received
frame is the last segment of segment sets of a
transaction.

NU: This field is not utilized and it can be used in later
development or allocating more bits to source and
destination addresses.

Type: This single-bit field specifies the kind of frame.

Four most significant bits (ACK, NAK, REQ and

DATA) specify the frame type and four least significant

bits specify the frame sub-types.
In order to decrease the length of Type field, the

kind of the frame is determined with regarding to the
destination subsystem. For example, if this field is 0×11
and the address is Power subsystem frame, it indicates
SET_SWITCH command. However, if the frame’s
destination address is Attitude Determination and
Control Subsystem (ADCS), it indicates
SET_ACTIVE_DATA command.

Seg no: Each CAN frame is able to transfer up to 8

bytes, therefore, in case the transmitted packet data

length is more than 8 bytes, segmentation operation

Fig. 3: Segment sequence number application

Fig. 4: Satellite communication infrastructure

ADCS: Attitude determination and control subsystem;
Telecmd: Telemetry and telecomand; C&DH:
command and data handling

should be performed. This field shows the segmentation

number related to each transaction.

The purpose of this field is assuring to receive all

of the segmentations. If each segmentation is failed due

to any reason, the receiver is able to specify the

occurred failure by the next segmentation number and

informs the sender about the occurred failure by

sending NAK frame in the transaction to have a second

sending. Figure 3, shows this mechanism.

Communication with subsystems: Figure 4 shows

satellite communication sub-structure. The entire

structure of the satellite is master/slave; i.e., C&DH

firstly sends a command to each subsystem and the

subsystem after performing the command sends back

the suitable response to C&DH.

Tx

Rx

1 2 3 4 5 NAK

Manager Task

Subsystem tasks

A
D

 C
S

P
o

w
er

T
h

er
m

al

T
el

em
er

ty

T
el

ec
m

d

P
ay

lo
ad

OS (C)µ

CAN protocol

CAN driver (MPC) 555

Subsystem application

CAN protocol

CAN driver (AT CAN)
9

o 128

C&DH

Subsystem

CAN Bus

Res. J. Appl. Sci. Eng. Technol., 5(2): 445-451, 2013

448

Fig. 5: State machine of type 1 transaction in C&DH

In this protocol, three kinds of transactions are

considered and each of them is described in the

following sections.

Sending data to subsystem (type 1): In these

transactions, C&DH sends a command as well as the

required data for performing the command to

subsystem.

For example, SET_SWITCH command, that is

connected to power subsystem is one f them.

The state machine of these transactions is shown in

Fig. 5. After initial performing, the state machine is

firstly placed in idle state. Afterwards, by calling the

related function, the first segment which consists of

command and data is constructed and waits for the

grant to use bus and frame sending.

In case the sending grant is not received before the

previous allocated time, timeout failure occurs and

transaction will be finished. After sending the next

segments (i.e., data), like what was mentioned, the state

machine is transferred to wait state for response and

will wait to receive response from subsystem. If the

response is not received in the specified time, timeout

failure happens. Otherwise, the transaction will be

finished by receiving the response and the state

machine turns back to the idle state.

Data receiving from subsystem (type 2): In this

transaction, C&DH demands receiving data by sending

a command subsystem. One example of this transaction

starts by GET_SENSOR_DATA command.

By function call, the transaction is started and the

state machine is transferred to wait state for grant and

waits to be allowed to use CAN bus. In case, the grant

is not sent in the specified time, the transaction

encounters timeout failure.
After sending the command, C&DH waits for

receiving the first segment. After receiving the first
segment, if the LS field is 1, it means that this segment
is the last segment of the current transaction and the
packet is produced and turned back as the output
function. Otherwise, the related task in C&DH waits for
receiving the next segments. After receiving each
segment, the number of the segment is checked and if it
is not correspondent with the desired amount, OOR
(Out of Order) failure is produced. Finally after
receiving the last segment, the machine turns back to
the idle state. This transaction is shown in Fig. 6.

Sending single-command to subsystem (type 3): The

purpose of this transaction is sending a command by

C&DH to subsystem in a way that there is no need to

have data. For example, START_SEND command in

Payload subsystem is such a transaction. This

transaction is similar to type 1 transaction, by this

difference that it is without data for sending. This

transaction type is shown in Fig. 7.

EXPERIMENTAL RESULTS

For testing this protocol, the information packet

should be transferred through communication bus. In

order to do this, firstly, it is needed to test CAN bus

driver.

Testing CAN drive: The utilized microprocessors for

communication are MPC555 microprocessor (C&DH

processor) and AT90CAN128 microprocessor

(Subsystem processor). The suitable driver is

seg: Segment

trans: Transaction

rsp: Response

LS: Last Segment

TO: Time Out

rcvd: Received

Res. J. Appl. Sci. Eng. Technol., 5(2): 445-451, 2013

449

Fig. 6: State machine of type 2 transaction in C&DH

Fig. 7: State machine of type 2 transaction in C&DH

customized for them. In order to do this, PCAN-USB

tool is utilized. This tool is an adapter that prepares the

ability of connecting the computer to CAN bus by USB.

Beside this tool, there exists an interface application

software, that CAN bus sending rate can be adjusted by

it. Moreover, CAN frames can be produced periodically

and with desired field amounts and can be sent onto

bus. On the other hand, all of the transferred frames

onto bus can be monitored and their contents can be

observed by this tool.

The testing procedure is that CAN bus sending rate
is adjusted equally between the tested node (that in one
state is C&DH node and the other state is a node related
to one of the subsystems) and PCAN tool. Then in one
step, the tested node is considered to be the sender and
PCAN node is the receiver. In the other step, PCAN
node is considered to be the sender and the tested node
is the receiver. In both steps, the correctness of sending
and receiving CAN frame is tested. Therefore, it can be
assured about the accuracy of CAN driver’s entire
operation.

seg: Segment

trans: Transaction

LS: Last Segment

TO: Time Out

rcvd: Received

OOR: Out of Order

trans: Transaction

TO: Time Out

rcvd: Received

rsp: Response

Res. J. Appl. Sci. Eng. Technol., 5(2): 445-451, 2013

450

Table 4: Insertion the present protocol in some communication function

Function name

Response normal

time (ms)

Send data capacity

(byte)

Receive data capacity

(byte) Timeout time (ms)

thermal-get-data 20 4 80 40
adcs-get-data 20 4 60 40

adcs-send-data 5 20 4 10

pw-get-data 4 4 32 8
pw-set-switch 5 8 4 10

Proposed CAN protocol testing: After testing CAN

driver’s operation, CAN protocol should be tested. For

testing the protocol, two subsystem testing nodes are

utilized, i.e., C&DH and PCAN tool nodes to monitor

traffic on bus. These nodes are connected to CAN bus

by DB9 connector and based on CiA standard. Then

each mentioned transaction should be tested accurately

and under different situations (like creating timeout or

out of order situations) to be assured about their

operations.

Table 4 shows an example of the results obtained

from these operations. As it can be seen, the suggested

protocol can fulfill deadlines for different information

packets.

CONCLUSION

CAN bus that is formed based on CAN

communication protocol, is a useful communication bus
especially for embedded systems and it covers great
area of application. In specific application, CAN
protocol headers can be omitted by a flexible design
presentation. Based on this attitude, in this paper, a
customized protocol based on CAN protocol is
designed and implemented for intra-communication of
satellites and it is very light and has a high reliability.

ACKNOWLEDGMENT

This study was supported by the Research Institute
for ICT-ITRC.

REFERENCES

Aysan, H., A. Thekkilakattil, R. Dobrin and

S. Punnekkat, 2010a. Efficient fault tolerant

scheduling on Controller Area Network (CAN).

Proceeding of International 15th International

conference on Emerging Technologies and Factory

Automation, pp: 1-8.

Aysan, H., A. Thekkilakattil, R. Dobrin and

S. Punnekkat, 2010b. Efficient fault tolerant

scheduling on Controller Area Network (CAN).

Proceeding of International 13th International

Symposium on Object/Component/Service-

Oriented Real-Time Distributed Computing

Workshops, pp: 1-8.

Bago, M., S. Marijan and N. Perić, 2007. Modeling

controller area network communication.

Proceeding of 5th International Conference on

Industrial Informatics, pp: 485-490.

Chen, H. and J. Tian, 2009. Research on the controller

area network. Proceeding of International

Conference on Networking and Digital Society

(ICNDS 09), pp: 251-254.
Dorbin, R. and G. Fohler, 2001. Implementing off-line

message scheduling on Controller Area Network
(CAN). Proceeding of the 8th IEEE Conference on
Emerging Technologies and Factory Automation
(ETFA 2001), pp: 241-245.

Jaman, G. and S. Hussain, 2007. Structural monitoring
using wireless sensors and controller area network.
Proceeding of 5th Annual Conference on
Communication Networks and Services Research
(CNSR' 07), pp: 26-34.

Marino, A. and J. Schmalzel, 2007. Controller area
network for in-vehicle law enforcement
applications. Proceeding of Sensors Applications
Symposium (SAS 07), pp: 1-5.

Murtaza, A.F . and Z.A. Khan, 2008. Starvation free
controller area network using master node.
Proceeding of 2th International Conference on
Electrical Engineering, pp: 1-6.

Nolte, T., H. Hansson and C. Norstrom, 2003.
Probabilistic worst-case response-time analysis for
the controller area network. Proceeding of the 9th
IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’ 03), pp:
200-207.

Umamaheswaran, S. and S. Nagendra, 2009.
Microcontroller based multi-star simulator using
Controller Area Network (CAN). Proceeding of
Aerospace and Electronics Conference
(NAECON), pp: 139-145.

Zeng, H., M.D. Natale1, P. Giusto and A. Sangiovanni-
Vincentelli, 2009. Statistical analysis of controller
area network message response times. Proceeding
of International Symposium on Industrial
Embedded Systems (SIES 09), pp: 1-10.

Zhu, Y., Y. Wang and U. Schaefer, 2010. Study on the
communication between FPGA and observer using
controller area network and UART. Proceeding of
International Conference on Information,
Networking and Automation (ICINA), pp:
240-244.

Res. J. Appl. Sci. Eng. Technol., 5(2): 445-451, 2013

451

Ziermann, T., S. Wildermann and J. Teich, 2009.
CAN+: A new backward-compatible Controller
Area Network (CAN) protocol with up to 16x
higher data rates. Proceeding of Conference on
Design and Automation and Test in Europe
(DATE’09), pp: 1088-1093.

Zuberi, K.M. and K.G. Shin, 1997. Scheduling message
on controller area network for real-time CIM
application. IEEE Trans. Robot. Autom., 13(2):
310-316.

Zuberi, K.M. and K.G. Shin, 2000. Design and

implementation of efficient message scheduling for

control area network. IEEE Trans. Comput., 49(2):

182-188.

