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Abstract: Linear orthomorphism has the well diffusibility, which can be used to design P-permutation in 
cryptography. This paper presents the definition of the linear orthomorphisms and orthomorphic matrices on the 
integer residue class ring, whose counting formulas have been obtained too. They have provided a theoretical basis 
to research the nature of orthomorphisms on the ring in the cryptography. 
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INTRODUCTION 

 
Shannon (1994) the well-known communications 

experts, has pointed out that the main idea of the cipher 
design is the diffusion and confusion. From the 
mathematical point of view, the combination of the 
linear and nonlinear permutations has a good role on 
diffusion and confusion. Complete mappings is widely 
used because of the good cryptographic properties, they 
have been proposed and studied as early as 1942 in 
Mann (1943) and shortly thereafter, they have been 
researched from the perspective of the algebraic 
geometry and group theory in Hall and Paige (1957). 
Then, the complete mappings have been widely used at 
the block design, statistical analysis, the areas of 
channel coding and so on. The orthomorphisms and 
Omni directional permutations are two important kinds 
of complete mappings. The concept of orthomorphisms 
was firstly formally presented in Jin-Ping and Shu-
Wang (2006) for the study the orthogonal of Latin 
squares. Dr. L. (1995), in U.S., Mittenthal of TET 
(Teledyne Electronic Technology) has first studied 
orthomorphisms from the cryptography (Lohrop, 1995) 
and he also proved that the orthomorphisms over GF 
(2n) have a good cryptographic property: completely 
balanced. The orthomorphisms over GF (2n)  have been 
also used on the design cipher, the digital signature and 
authentication algorithms. The commercial block cipher 
SMS4 has been designed on the round function based 
on the nonlinear orthomorphism (Shuwang et al., 
2008). In addition to the commercial cipher, the 
orthomorphisms have the other related applications, 
such as: 

• Teledyne Electronic Technology has researched 
and developed the cipher products DSD used 
orthomorphisms (Lohrop, 1995). 

• In Qibin and Ken Cheng (1996) the linear 
orthomorphisms have been used to enhance the 
cipher security and improve cryptography 
properties. 

• In Dawu et al. (1999) the orthomorphisms have 
been constructed Boolean functions, which meet 
the balance; algebraic degree is not less than 3.  
 

The aspects of the nonlinearity, linear structure, the 
infusibility have good character.  

In general, the orthomorphisms are classified into 
the linear and the nonlinear two kinds to study. This 
study focuses on the linear orthomorphisms over the 
ring Zn. 

The counting formula and generation algorithm 
(Yong and Qijun, 1996; Zongduo and Solonmen, 1999) 
of the linear orthomorphisms over the finite field F2

n 
have been obtained, but they are very complex. In 
addition, the counting formula and generation algorithm 
of the nonlinear orthomorphisms have not been studied 
well. In order to explore orthomorphism more in 
cryptography applications, as well as to further study 
the mathematical properties and mathematical 
applications of them, this study have proceed the more 
extensive research of orthomorphisms over the ring 
instead of the finite field, because the nature of 
orthomorphisms over the ring is meet and it also must 
satisfy over the field. For simplicity, we have studied 
only the linear orthomorphisms over the ring Zn, as the 
nonlinear orthomorphisms over Zn will be researched 
later on.  
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In the design of modern cryptography, the linear 
orthomorphisms have been designed in the P-
permutation (Haiqing and Huanguo, 2010). P-
replacement the cryptography indicator to Measure the 
P-permutation is branch number. So the linear 
orthomorphisms with the largest branch number have 
been choose to design the cipher parts and the linear 
orthomorphisms over the ring Zn is exactly the rich 
resources to design the P-permutations. We have 
studied the enumeration and construction problems of 
the linear orthomorphisms and the orthomorphic 
matrices over Zn in this study. 

 
PRELIMINARIES 

 
Let {0,1, , 1}nZ n= −L be the residue class ring of 

integers modulo n, where i represents the class of all 
integers that the remainder is i divided by n, Consider 
the following permutation. 
 
Definition 1: Let : n nZ Zσ → be the permutation on Zn, 
σ is called the orthomorphism on Zn, if σ + I (I is a unit 
transformation) is the permutation on Zn too. σ is called 
the Omnidirectional permutation, if  σ - I is also the 
permutation on Zn. 

For the every integer l (l<n), σ is called the l - 
generalized orthomorphism, if σ + lI are all the 
permutations on Zn. , nx y Z∀ ∈ ,  if σ(x + y) = σ(x) + 
σ(y) then σ  is said as the linear orthomorphism.  

Let F be the finite field, the polynomial [ ]f F X∈  
So c F∀ ∈ , ( )f c F∈ . 

The Polynomial f є F[X] is a transformation on F. 
If f (X) is one to one transformation, then it is said a 
permutation on F. It is easy to the following facts: that 
f(X) is a permutation on Fif and only if : ( )f c f ca is 
injective on F, if and only if f is a subjective on F, if 
and only if a F∀ ∈ the equation f (X) = a has the 
solution, if and only if a F∀ ∈  the equation f(X) = a has 
a unique solution.  
 
Definition 2: Let [ ]f F X∈  and f(X) = a0 + a1X +… + 
anXn, if an ≠ 0, then f(X) = is said the polynomial of the 
degree n. Denote deg(f(X)) = n. 

By the Lagrange interpolation formula, and a 
permutation on F can be expressed into the polynomial 
of the degree not more then (|F| - 1). Where |F| is the 
cardinality of the finite field F.  

 
Definition 3: Let A be a matrix on Zn, that is the entries 
of A come from Zn, the determinant of A is defined as 
usual, so the value of the determinant of A is an 
element in Zn. If this element is invertible about the 
multiplication (or the addition generator), then it is said 
by invertible. The matrix A is said the orthomorphic 

matrix on the ring Zn, if the matrices A and A + I are all 
invertible.  

By the definition 2, the matrix A on Zn is the 
orthomorphic matrix if and only if det A and det (A + I) 
are the invertible element (or generators) in Zn, if and 
only if gcd (det A, n) = 1 and gcd (det A, n) = 1 set up 
at the same time by the definition of the invertible 
element in Zn.  

The linear orthomorphism and the orthomorphic 
matrix are one to one over the finite field (Yun and 
Hongwei, 2002). But the linear orthomorphism and the 
orthomorphic matrix are not satisfied the one-one 
corresponding over the ring Zn. And it is also difficult 
to express the orthomorphism into the polynomial over 
the ring Zn. The evidence shows that the research 
method of orthomorphisms over the finite field cannot 
be used to study the orthomorphisms over the ring Zn. 

In order to understand the algebraic structure 
properties of the ring, the isomorphism theorem of the 
ring Zn is firstly given.  
 
Lemma 1: Let n be the order of the ring Zn, the 
standard decomposition is n = pr1

1 pr2
2…prs

s, where p1, 
p2,…, ps p1,  are  the  distinct  prime  numbers, denote 
mi = pri

i(1≤i≤s), then there is the ring isomorphism: 

1 2 sn m m mZ Z Z Z≅ ⊕ ⊕ ⊕L . 
This is the famous Chinese Remainder Theorem, 

we need not give the proof because of it can be found in 
many textbooks. In Shuwang et al. (2008), it has pointed 
out there is the one to one corresponding relationship 
between the orthomorphism and the Omni directional 
permutation over the ring Zn, as long as an 
orthomorphism is constructed, it is easy to get an Omni 
directional permutation over the ring Zn, so they are 
uniform to study for simplicity. We have only studied 
the linear orthomorphism on the ring Zn (that is 
equivalent to study the linear Omni directional 
permutation on the ring Zn). From the algebra, the ring 
Zn is a cyclic group on its addition, the isomorphism 
number of the cyclic group is determined by its 
generators. And ,na Z∀ ∈ a is an additive generator if 
and only if gcd (a, n) = 1, where a is one representative 
of the remaining class a . It is easy that the number of 
the additive generators in the ring Zn is φ(n) (φ is the 
Euler function). 

 
THE MAIN CONCLUSIONS 

 
With this basic knowledge, we can get some 

conclusions on the linear orthomorphisms over the ring 
Zn. 

 
Theorem 1: Let σ be a linear orthomorphism over the 
ring Zn, if and only if σ and (σ + I) are the 
automorphism of the additive group Zn. 
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Proof: σ is a linear orthomorphism over the ring Zn, if 
and only if σ and (σ +I) are the linear permutations over 
the ring Zn. As Zn is an additive group, , nx y Z∀ ∈ , it is 
satisfied σ(x + y) = σ(x) + σ(y). Hence, σ is the group 
orthomorphisms on Zn. Similarly, (σ + I) are also the 
group orthomorphisms. 

The linear orthomorphisms over the ring Zn are 
linked into the group orthomorphisms by theorem 1. 
Here is the decomposition property of the ring auto 
morphisms.  

 
Lemma 2 (Yun and Hongwei, 2002): Let

1 2 sn m m mZ Z Z Z≅ ⊕ ⊕ ⊕L ,  where n = pr1
1 pr2

2… prs
s and 

mi = pri
i (1≤i≤s), then σ is the orthomorphisms of the 

additive group if and only if σ |Zmi is the 
orthomorphisms of Zmi(1≤i≤s). Where σ |Zmi is indicated 
that the automorphisms σ on Znis restricted on Zmi. 

Lemma 2 demonstrates that if the automorphism σ 
|Zmi = σi on Zmi(1≤i≤s) are found, then the group 
automorphism  σ = (σ1, σ2, … , σs)  on  Zn satisfied 
σ|Zmi = σ on Zmi(1≤i≤s) can be determined. The linear 
orthomorphism over the ring Zn can be transformed the 
group automorphism on Zn, and the group 
automorphism σ = (σ1, σ2,…, σs) on Zn can be 
transformed the group automorphism on Zmi(1≤i≤s). 
Thus the whole question is to find the additive group 
automorphism on Zmi (where mi = pri

i is a prime power). 
But, the additive group automorphism on Zmi is 
determined entirely by the additive generator. 

,
imx y Z∀ ∈ , they are any two additive generators on Zmi, 

then σ (x) = y determines an additive group 
automorphism σ on Zmi. The number of generators in 
Zmi is φ(mi), where φ(mi) is the Euler function, which 
the number of the elements are coprime to mi in the set 
{0, 1, … , mi - 1}. 
 
Theorem 2: The number of the linear orthomorphisms 
over the ring Zp

r (p is prime) is: 
 

1 1( ) ( ) ( 1) ( 2)r r r rp p p p p pϕ φ − −= − −  
 

Proof: From the previous analysis, σ is the linear 
orthomorphisms over the ring Zpr if and only if σ and (σ 
+ I) are both the additive group orthomorphisms over 
the ring Zp

r, if and only if σ and (σ + I) become the 
generators into the generators. Note ,a b  are in the ring 
Zp

r, then ,a b  are the residue class, ,a b  are respectively 
representative element in ,a b . ,a b are the generators if 
and only if a, b are prime to n. Without loss of 
generality, suppose ( )a bσ = , then ( )( )I a b aσ + = + . 
The number of the linear orthomorphisms are 
completely determined by the pairs {a, b} (0≤a, b≤pr - 
1), they satisfied: 

gcd( , ) 1 (1)
gcd( , ) 1 (2)

gcd( , ) 1 (3)

r

r

r

a p
b p

a b p

⎧ =
⎪ =⎨
⎪ + =⎩

 

 
a and b are respectively expressed into p-hexadecimal 
numbers: 
 

1
0 1 1

r
ra a a p a p −
−= + + +L  

 
where, 
 

0 1(0 1)ia p i r≤ ≤ − ≤ ≤ −  
 

1
0 1 1

r
rb b b p b p −
−= + + +L  

 
where, 
 

0 1(0 1)ib p i r≤ ≤ − ≤ ≤ −  
 

If  the  Eq. (1)  is establishment, then a0 ≠ 0; the 
Eq. (2) is establishment, then b0 ≠ 0; the Eq. (3) is 
establishment, then a0 + b0 ≠ p. And the other ai, bi are 
only satisfied 0≤ai≤p - 1(1≤i≤r - 1) and 0≤ai≤ p - 1(1≤i≤ 
r - 1). a is entirely decision by {a0, a1, … , ar-1}, there 
are (p - 1) choices to a0 and there are p choices to each 
a1, a2, …. , ar-1. There are φ(pr) selection methods to a, 
namely φ(pr) = pr-1 (p - 1); b is also completely 
determined by {b0, b1, … , br-1}. However, when a is 
selected well, there are (p - 2) choices to b0 and there 
are p choices to each b1, b2,…, br-1. So there are φ(pr) 
selection methods to b, that is φ(pr) = pr-1 (p - 2). The 
linear orthomorphism σ is determined by a pair of 
numbers {a, b} with ( )a bσ = .  

In summary, the number of the linear 
orthomorphisms over the ring Zpr is: 

 
1 1( ) ( ) ( 1) ( 2)r r r rp p p p p pϕ φ − −= − −   

 
It is easy to get the counting formula of the linear 

orthomorphisms over the ring Zn Combined with 
Theorem 1 and 2. 
 
Theorem 3: Let Zn be the ring met n = pr1

1 pr2
2 … prs

s, 
the number of the linear orthomorphisms Zn is:  
 

1 1

1 1

( ) ( ) [ ( 1) ( 2)]i i i i

s s
r r r r
i i i i i i

i i

p p p p p pϕ φ − −

= =

= − −∏ ∏   

 
Proof: Let 

1 2 sn m m mZ Z Z Z≅ ⊕ ⊕ ⊕L , where mi = pri
i 

(1≤i≤s). By Lemma 2, the linear orthomorphism over 
the ring Zn is entirely determined by the set of the linear 
orthomorphisms {σ|Zmi} over {Zmi (1≤i≤s)}. The linear 
orthomorphism over Zn can be formed, as long as the 
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linear orthomorphisms are constructed over each Zmi 
(1≤i≤s). That is σ = (σ1, σ2,…, σs), where  σ |Zmi = σi. 
By the Multiplication combination principle, the 
number of the linear orthomorphisms Zn is:  
 

1 1

1 1

( ) ( ) [ ( 1) ( 2)]i i i i

s s
r r r r
i i i i i i

i i

p p p p p pϕ φ − −

= =

= − −∏ ∏   

 
With above results, it is basically clear to the 

construction and enumeration of the linear 
orthomorphisms over the ring 

nZ , which is the linear 
Omni directional permutation over the ring Zn is all 
clear. But sometimes it needs to study the orthomorphic 
matrix over the ring. By the preceding discussion, the 
linear orthomorphism and the orthomorphic matrix are 
not satisfied the one-one corresponding over the ring 
Zn. It must be researched.  

Let A = (aij)k×k be the k×k matrix on Zn, that is 
ij na Z∈ . By the definition of the determinant: 

 
1 2

1 2

1 2

( )
1 2det ( 1) k

k

k

i i i
i i i k

i i i

A a a aτ= −∑ L

L

L  

 
where the sum is the all arrangement (i1i2… ik) of 1, 2, 
… k. τ(i1i2 … ik) represents the inverse ordered number 
of   the   arrangement   (i1i2 … ik).   By   definition,   if 
A = (aij)k×k is the matrix on the ring Zn, then det nA Z∈ .  
 
Lemma 3: Shengyuan (1999), Let A = (aij)k×k be an 
invertible matrix on the ring Zn, if and only if det A is 
the multiplication invertible element in Zn. Let 

1 2 sn m m mZ Z Z Z≅ ⊕ ⊕ ⊕L  and A = (aij)k×k is an 
invertible matrix on the ring Zn, after the every element 
in the residue class aij is modulo mt, A = (aij)k×k can 
regard as a matrix on  Zmt, then A is invertible matrix 
on the ring Zmt. On the contrary, find an invertible 
matrix At = (a(t)

ij)k×k on the each ring Zmt(1≤t≤s), 
through the isomorphism 

1 2
:

sn m m mf Z Z Z Z→ ⊕ ⊕ ⊕L , 
we  have  obtained  the  matrix   A = (aij)k×k, satisfied  
aij = f(a(1)

ij, a(2)
ij,…, a(s)

ij), then A = (aij)k×k is invertible 
on the ring Zn. Then the invertible matrix on the ring Zn 
can be converted into the invertible matrix on the ring 
Zp

r (p is prime). A matrix A = (aij)k×k on the ring Zn is 
invertible if and only if gcd (det A, pr) = 1, so gcd(det 
A, p) = 1, which is indicated that the matrix A = (aij)k×k  
is invertible regarded on the ring Zp. While the ring Zp 
is a finite field, the number of the invertible matrices 
with the order k is ∏ ሺ݌௞ െ ௜௞ିଵ݌

௜ୀ଴ ) on the finite field Zp. 
Further, any invertible matrix with the order k on the 
ring Zp can be extended into the invertible matrix on the 
ring Zp

r, only let 1( ) ,0 1r
ij k kA a lp l p −

×′ = + ≤ ≤ − . Then 
an invertible matrix with the order k on the ring Zp can 
be extended into pk2(r-1) invertible matrices on the ring 
Zpr. So the number of the invertible matrices with the 
order k on the ring 

rp
Z is 2

1
( 1)

0

( )
k

k i k r

i

p p p
−

−

=

−∏ . With a similar 

method, we have determined the number of the 
orthomorphic matrix with the order k on the ring Zpr.  

 
Theorem 4: The number of the orthomorphic matrices 
with the order k on the ring Zpr is Tk(p) (k≥2), then: 

 
2

1
( ) 2 ( 1)

2 1

( ) ( ( ) ( ))
lk

k i k k l l k r
k k l

l i

T p p p p L p p
−

− + − −
−

= =

= −∑∏   

 
where,  Lk-l(p) = the number of the matrices with the 
order (k - I) on the ring Zp and they have no the Eigen 
values 0 and 1. Regulate: L0(p) = 1 and L1(p) = p - 1.  
 
Proof: The orthomorphic matrices with the order k on 
the ring Zpr can be extended from orthomorphic 
matrices on the ring Zp. The matrix A = (aij)k×k, on the 
ring Zpr is the orthomorphic matrices with the order k if 
and only if A, A + I are invertible, A, A + I can be 
entirely expanded from invertible matrices on the ring 
Zp. Hence, it only needs to find out invertible matrix A 
with the order k on the ring Zp satisfied that (A + I) is 
invertible; it can be extended to invertible matrix A 
with the order k on the ring Zpr.  

Imitate the proof method in Shengyuan (1999), it is 
easy to get the number of the matrices with the order 
(kI) on the ring Zp and they have no the eigenvalues 0 
and 1, that is:  

 
1

( ) 2

2 1

( ) ( )
lk

k i k k l l
k l

l i

p p p L p
−

− + −
−

= =

−∑∏  

 
where, Lk-I(p) is the number of the matrices with the 
order (k - I on the ring Zp and they have no the 
eigenvalues 0 and 1. Then they can be extended to the 
ring Zpr, the number of the orthomorphic matrices with 
the order k on the ring Zpr is: 
 

2
1

( ) 2 ( 1)

2 1

( ) ( ( ) ( ))
lk

k i k k l l k r
k k l

l i

T p p p p L p p
−

− + − −
−

= =

= −∑∏  

 
The proof is end.  

Next, we give the counting formula of the 
orthomorphic matrices with the order k on the ring Zn. 
 
Theorem 5: Let 

1 2 sn m m mZ Z Z Z≅ ⊕ ⊕ ⊕L  and 
1 2

1 2
srr r

sn p p p= L , (1 )ir
i im p i s= ≤ ≤  , then the counting 

formula of the orthomorphic matrices with the order k 
on the ring Zn is:  
 

2
1

( 1) ( ) 2

21 1

( ) [ ( ( ) ( ))]
s lk

k r k i k k l l
k j j j j k l j

lj i

T n p p p p L p
−

− − + −
−

== =

= −∑∏ ∏   

 
where, Lk-l(pj) (1≤j≤s) is the number of the matrices 
with the order (k - l) on the ring Zpj and they have no 
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the  Eigen values 0 and 1. Regulate: L0(pj) = 1 and 
L1(pj) = pj - 1. 

The proof of theorem 5 is mainly that the 
orthomorphic matrices on the ring Zn are transformed 
onto the ring Zpj. Then the orthomorphic matrices on all 
the rings {Zpj| 1≤j≤s} are isomorphism into the 
orthomorphic matrix on the ring Zn, which is the result 
of the theorem. For simplicity, we have not proved this 
theorem. 

 
CONCLUSION 

 
We have mainly studied the linear orthomorphisms 

and the orthomorphic matrices on the ring Zn in this 
study and given the counting formula. Because there 
exist the zero factors in the ring Zn, the linear 
orthomorphisms and the orthomorphic matrices are not 
satisfied the one-one corresponding relationship over the 
ring Zn. In cryptography, the linear orthomorphisms 
have mainly been designed the P-permutation. The 
important cryptography quality indicator to measure P-
permutation is the branch number (Haiqing and 
Huanguo, 2010), it is still an important issue to research 
the linear orthomorphisms and the orthomorphic 
matrices on the ring Zn. In addition, the nonlinear 
orthomorphisms have mainly been designed the S-box, 
which is the core of the cipher security.  
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