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Abstract: A power penalty approach has been proposed to linear complementarity problem but not to Horizontal 
Linear Complementarity Problem (HLCP) because the coefficient matrix is not positive definite. It is skillfully 
proved that HLCP is equivalent to a variational inequality problem and a mixed linear complementarity problem for 
the first time. A power penalty approach is proposed to the mixed linear complementarity problem based on 
approximating the HLP by a nonlinear equation. It has been proved that the solution to this equation is feasible and 
converges to that of the HLP at a rate of at least �(λ)��/� in the Euclidean norm. 
 
Keywords: Convergence rate, horizontal linear complementarity problem, power penalty methods, strong 

monotone, variational inequality 
 

INTRODUCTION 
 

Consider a horizontal linear complementarity 
problem as follows:  
 
Problem 1: Given A ε Rnxn, B ε Rnxn are matrixes and q 
ε Rn is a vector, find a pair x, y ε Rn such that: 
 

Ax-By = q                 (1) 
 

x≤0                  (2) 
 
y≤0                  (3) 

 
xTy = 0                 (4) 

 
It is worth noting that HLP becomes LCP if B = I 

and if B is nonsingular, HLCP can reduce to LCP. So 
HLCP is the generalization of LCP. HLCP also includes 
the Linear Optimization (LO) and Convex Quadratic 
Optimization (CQO) (Zhang, 1994). LCP arise in many 
mathematical models from economy and technology. 
And various approaches to LCP are developed in recent 
years which are based commonly on Newton’s method 
and Interior-Point Methods (IPMs). Some alternative the 
weighted path-following interior-point methods were 
proposed. Ding and Li (1998) studied the weighted path-
following methods for LCP. Jansen et al. (1996) 
presented the primal-dual target-following algorithms 
for LO. Some IPMs for LO, CQO and LCP have been 
extended to HLCP, Such as Bonnans and Gonzaga 
(1996)   studied   the   HLCP, (Huang, 2000) proposed 

an high-order feasible interior point method for HLCP 
with O(√n log ε0/ε) iterations. Sturm (1999) derived the 
superlinear convergence properties for monotone linear 
complemntarity problem under no strictly 
complementary solution exists. Zhang and Zhang (1995) 
presented a class of infeasible IPMs for HLCP. 

However, there was a limited study of penalty 
methods for LCP. Recently, (Wang and Xiaoqi, 2008) 
first presented a power penalty method for LCP in Rn 
based on approximating the LCP by a nonlinear 
equation and (Huang and Wang, 2010) developed it to 
NLCP and shown that the solution to the penalty 
equation converges to that of the NCP in the Euclidean 
norm at a rate of at least O(λ-k/ξ). Inspired by their study, 
we develop a power penalty method for solving HLCP, 
based on the idea in Wang and Xiaoqi (2008) and 
Huang and Wang (2010). We first approximate the HLP 
by a nonlinear system of equations in which a power 
penalty term with a penalty constant λ>1and a power 
parameter k>0 are contained. If coefficient matrixes A, 
B obey the Assumption A1, we show that the solution to 
the penalty equation converges to that of the HLP in the 
Euclidean norm at a rate of at least O(λ−k/2). 

In this study, we use 
p
 to denote the usual lp-norm 

on Rn for any p>1. When p = 2, it becomes the 
Euclidean norm. [u]+ = max {u, 0}, [u] = min {-u, 0}, 
and yσ = (yσ

1, y
σ

2,…, yσ
n)

T for any y = (y1, y2,…, yn)
T 

and constant σ>0.The outline of the study is as follows. 
In next section, we briefly introduce the problem, prove 
skillfully that HLCP is equivalent to a variation 
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inequality problem and a mixed linear complementarity 
problem and give its penalty formulation.  

 
THE PROBLEM AND ITS PENALTY 

FORMULATION 
 

Let the cone:  
 

K = {(xT, yT)Tx ε Rn, y ε Rn, y≤0}                     (5) 
 
which is a closed, convex and self- dual in R2n. 
If we let: 
 

( )
( , )

Ax By q
F x y

I A x By qβ β β
− − 

=  − + +                 (6) 
 
and β is a constant and define the following variational 
inequality problem corresponding to Problem 1. 
 
Problem 2: Find (xT, yT)T such that for all (uT, vT)T ε K: 
 

( )
0

T
Ax By qu x

I A x By qv y β β β
− −     

− ≥      − + +                (7) 
 
It can easily be shown that the variational inequality 
problem is equivalent to a mixed linear 
complementarity as follows: 
Find a pair x, y ε Rn such that: 
 

( )

( ) ( )
( )

, 0

0

, 0

, 0T

G x y Ax By q

y

H x y I A x By q

y H x y

β β β

= − − =

≤

= − + − ≤

=               (8) 
 
We can prove Problem 1 and 2 is equivalent, 

namely, the Theorem 2 is true: 
 
Proposition 1: (xT, yT)T is a solution for Problem 1 if 
and only if  (xT, yT)T is a solution of Problem 2 at one 
time. 
 
Proof: If (xT, yT)T is a solution for Pronlem 1, it is 
obvious (xT, yT)T ε K and for any (uT, vT)T ε K, we 
have: 
 

( )
0

T

T
Ax By qu x

v x
I A x By qv y β β β

− −     
− = ≥      − + +        

 
since v≤0 and x≤0. Therefore, (xT, yT)T is a solution of 
Problem 2. 
Conversely, if (xT, yT)T is a solution of Problem 2, we 
have y≤0. We first prove: 
 

( ) 0I A x By qβ β β− − − ≤
 

If it were not true, then there would exist at least an 
index i, such that the ith component of: 
 

( )I A x By qβ β β− − −   
 
Satisfies: 
 

( ) 0
i

I A x By qβ β β− − − >    
 
Since (uT, vT)T ε K is arbitrary, we choose u = x and: 
 

 

,

,
j

i

y j i
v

y j iε

≠= 
− =  

 
For j = 1, 2,…, n and an arbitrary constant ε>0. 
Substituting this into (2) gives: 
 

( )
( ) ( )

( ) 0

T

i i i

i

Ax By qu x

I A x By qv y

v y I A x By q

I A x By q

β β β

β β β

ε β β β

− −     
−       − + +      

= − − + +  

= − − + + <    
 
This contradicts the fact that (xT, yT)T is a solution 

to Problem 2. Thus, we have: 
 

( ) 0I A x By qβ β β− − − ≤  
 

Next, we show that Ax-By-q = 0. If it is not true, 
there must exist at least one indexi, such that (Ax-By-
q)i ≠. Now we choose u and v satisfying v = y and: 
  

( )
,

sgn ,

j

j i

x j i
u

x Ax By q j iε

≠=   − − − =    
 
For j 1, 2,…, n, where, sign denotes the sign function 
and an arbitrary constant ε>0. Substituting this into (2) 
yields: 
 

( )
( ) ( )

( ) ( )sgn 0

T

i i i

i i

Ax By qu x

I A x By qv y

u x Ax By q

Ax By q Ax By q

β β β

ε

− −     
−       − + +      

= − − −

 = − − − − − <   
 

Which is impossible as (xT, yT)T is a solution to 
Problem 2. Therefore, we have Ax-By-q = 0. 
So we have x≤0 from the facts: 
 

( ) 0I A x By qβ β β− − − ≤  
 And, 
 

0Ax By q− − =  
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Finally, let us show that xT y = 0. Since (uT, vT)T ε K is 
arbitrary, we choose (uT, vT)T, respectively as follows: 
 

( ) ( ), , 2
T T

T T T Tu v x y=
 

 
And, 

 

( ) 1
, ,

2

T
T

T T T Tu v x y
 =  
   

 
Substituting these into (7) respectively and noticing Ax-
By-q = 0 yields: 
 

( )
0

T

T

Ax By qu x

I A x By qv y

y x

β β β
− −     

−       − + +      
= ≥  
 

( )
1

0
2

T

T

Ax By qu x

I A x By qv y

y x

β β β
− −     

−       − + +      

= − ≥
 

 
So we can deduce xTy = 0. This completes the proof of 
the proposition. 

Next, we present a power penalty method for 
Problem 1. Consider the following penalty problem: 
 
Problem 3: Finding (xT

λ, y
T
λ)

T ε R2n, such that: 
 

[ ]
1

0
( , ) ( , ) 0

k

x y F x y
y

λ λ λ

λ

ϕ λ
+

 
 = + =
 
                   (9) 

 

where, F(x, y) = 	 
� − 
� − �(� − �
)� + �
� + ��� which is 

equivalent to: 
 

[ ]
1

0
0

k

Ax By q

x y

λ λ

λ λ

λ
+

 − −   + =                                (10) 
 
And λ>1 and k>0 are parameters.  

This is penalized equations corresponding to 
Problem 1, where the penalty term penalizes the 
positive part of yλ. When λ→∞, we expect that the 
solution (xT

λ, y
T
λ)

T  of the problem 3 converges to that 
of Problem 1. From (10), it is obvious that xλ≤0, yλ≤0 
in this way we can get a feasible solution which differs 
obviously from Wang and Xiaoqi (2008) and Huang 
and Wang (2010) and the rate of convergence depend 
distinctly on both of the parameters in the penalty term. 

  
CONVERGENCE ANALYSIS 

 

In this section we first give a assumption, and based 
on this assumption, Problem 3 has unique solution and 

establish some upper bounds for the distance between 
the solution the Problem 2 and 3, respectively which are 
based on the following assumption on the coefficient 
matrix H: 

 
A1: There exist constant β such that coefficient matrix: 
 

A B
H

I A Bβ β
− 

=  − 
  

 
is positive definite, i.e., there exist constants β and 
� > 0 such that 2

2

Tz Hz zα≥  for any zεR2n. 

 

Remark 1: Under the Assumption A1, we have no 
difficulty to proof that: 
 

( )
( , )

Ax By q
F x y

I A x By qβ β β
− − 

=  − + +   
 
is strong monotone and can proof øλ (x, y) is also strong 
monotone. So we can draw conclusion based on theory 
of variational inequality that the problem 2 has unique 
solution and we can affirm that the problem 3 has 
unique solution. 
 
Remark 2: when B = I and A positive definite, H is 
positive definite if and only if β[2l - βA(A+AT)-1 AT]  is 
positive definite. If we choose β satisfying 0 < � <

�
����, where, λmax is the maximal eigenvalue of 


(
 + 
�)��, H is positive definite Which weaken the 
conditions in Wang and Xiaoqi (2008). 
 
Theorem 1: Under the Assumption A1: 
 

 

[ ]
1

0
( , ) ( , )

k

x y F x y
y

λ λ λ

λ

ϕ λ
+

 
 = +
 
 

  

 
is strong monotone. 
 
Proof: In fact: for any:  
 

( ),
T

T Tx y
, ( ) 2,

T
T T nu v R∈

 
 

( ) ( )( )( ), , ( , ) ( , )T T T Tx y u v x y u vλ λϕ ϕ− −
 

 

( ) ( )( ) ( ), , [ ( , ) ( , )T T T Tx y u v F x y F u v= − −
 

[ ] [ ]
1 1

0 0
]

k ky v
λ λ

+ +

   
   + −
   
     
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( ) ( )( ) ( )

( ) ( )( )
[ ] [ ]

1 1

, , [ ( , ) ( , ) ]

0 0
, ,

T T T T

T T T T

k k

x y u v F x y F u v

x y u v
y v

λ
+ +

= − − +

    
    − −
    
    

  

 

( ) ( )( ) ( )

[ ] [ ]
( ) ( )( ) ( )

( ) ( )( )

1 1

2

2

, , [ ( , ) ( , ) ]

( ) ( )

, , [ ( , ) ( , ) ]

, ,

T T T T

T
k k

T T T T

T T T T

x y u v F x y F u v

y v y v

x y u v F x y F u v

x y u v

λ

α

+ +

= − −

+ − −

≥ − −

≥ −
 

 
So Problem 3 has unique solution based the Theorem 
2.3.3 of Facchinei and Pang (2003).  

In the rest of our discussion, we start our 
convergence analysis with the lemma as follow: 
 
Lemma 1: Let (xT

λ, y
T
λ)

T be the solution to Problem 3 
for any λ≥0, then there exists a positive constant M 
which is independent of (xT

λ, y
T
λ)

T, λ and K, such that:  
 

( )
2

,T Tx y Mλ λ ≤
                                        (11) 

 
Proof: let (xT

λ, y
T
λ)

T be the solution to Problem 3 for 
any λ≥0, Left-multiplying both sides of (9) by (xT

λ, 
yT

λ)
T gives: 

 

( ) ( )
[ ]

1

0
, ( , ) , 0T T T T

k

x y x y x y
y

λ λ λ λ λ λ

λ

φ λ
+

 
 + =
 
   

 
Or 
 

( ) [ ]
1

, ( , ) 0T T T
kx y x y y yλ λ λ λ λ λφ λ
+

+ =
             (12) 

 
Since 
 

[ ] [ ] [ ]
1 1

0
TT

k ky y y yλ λ λ λ+ + +
= ≥  

 
We have (xT

λ, y
T
λ)

 F(xλ, yλ) ≤0 So (xT
λ, y

T
λ)

 F(xλ, 
yλ) -F(0, 0)) ≤- (xT

λ, y
T
λ)

 F(0, 0) Using Cauchy-Schwarz 
inequality and F(x, y) is strong monotone, we have: 

 
2

2 2

2 2 2

(0,0) 2
x x x

F q
y y y

λ λ λ

λ λ λ

α
     

≤ =     
     

 

Therefore, �(��� , ���)��� ≤ !, where, M is obviously 

independent of (xT
λ, y

T
λ)

T, λ and k. 
 
Remark 3: F (x, y) is continuous obviously, Lemma 1 
shows that for any λ≥0, there exists a positive constant 

L which is independent of (xT
λ, yT

λ)
T λ and k, such 

that: 
 

2
( , )F x y Lλ λ ≤

                                  (13) 
 

Lemma 2: let (xT
λ, y

T
λ)

T be the solution to Problem 3 
for any λ≥0, then there exists a positive constant C 
which is independent of (xT

λ, y
T
λ)

T, λ and k, such that:  
 

2

[ ]

[ ] k

x C

y

λ

λ λ
+

+

 
≤ 

                           (14) 
 

Proof: Let (xT
λ, y

T
λ)

T be the solution to Problem 3 for 
any λ≥0,we have xλ≤0,which indicate [xλ]+ = 0, so we 
only proof ||[yλ]+||2≤C/λk under the conditions of the 
Lemma 2. 

Let C be a generic positive constant which is 
independent of (xT

λ, yT
λ)

T, λ and k. Left -multiplying 
both sides of (7) by, ([xλ]

T
+, [yλ]

T
+)T, i.e., (0, [yλ]

T
+)T 

gives: 
 

[ ]
1

[ ] [ ] 0T T
ky x y yλ λ λ λλ+ + +

+ =
                               (15) 

 
Adding both sides of (15) by -[yλ]

T
+ yλ gives: 

 

[ ]
1

[ ] [ ] [ ] [ ]T T T T
ky x y y y y y yλ λ λ λ λ λ λ λλ+ + + ++

− + = −
   (16) 

 
Since -[yλ]

T
+ yλ  = -[yλ]

T
+ [yλ]+≤0  we have from (16): 

 

[ ] ( )

( )

1

[ ] [ ] [ ]

[ ] ,[ ]

T T T
k

T T

y y y x y y

x
y y

y

λ λ λ λ λ λ

λ
λ λ

λ

λ + + ++

+ +

=≤ − −

− 
=  

   
 

Using Cauchy-Schwarz inequality, we have from the 
above equation: 
 

[ ] ( )[ ] ,[ ]
p

T T

p

x
y y y

y

λ
λ λ λ

λ

λ + ++

− 
≤  

   
 

( )[ ] ,[ ]T T

p
q

x
y y

y

λ
λ λ

λ
+ +

 
≤  

                             (17)  
  
where, p = 1 + 1/k, q = 1 + k  and 1/p + 1/q = 1. By the 
fact that all norms in Rn are equivalent and Lemma 1, 
we see that (17) implies: 
 

2
[ ]

k

C
yλ λ+ ≤
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where, positive constant C is independent of (xT
λ, y

T
λ) λ 

and k. Finally, (13) follows from the above estimate.  
As follows, we present and prove our main 

convergence result.  
 

Theorem 2: Let (xT, yT)T and (xλ
T, yλ

T)T be the 
solutions to Problem 2 and 3, respectively. There exists 
positive constant C that is independent of (xλ

T, yλ
T)T, λ 

and k such that: 
 

2
2

k

xx C

y y

λ

λ λ

  
− ≤  

                               (18) 
 

Proof: Since (xT, yT)T  is the solutions to Problem 2, it 
satisfies (7):  
 

Notice "#��$% − "#����$ = #� +� +$ '��( −'��( −
'��()'��()%  

 
where, ηλ = x + [xλ]- and rλ = y + [yλ]-. Since: 
 

[ ] 0, [ ] 0x x y r yλ λ λ λη − −− = − ≤ − = − ≤  
 

We have +� − ,�� − -./  0 1 

 

Let #23$ #� − ,�� − -.$, in (7), it follows:  

 

( ), 0

T

x x
F x y

y r y

λ

λ

η −    
− ≥    −      

 
Or  
 

( ), 0
T

F x y
r

λ

λ

η 
− ≥ 
                (19) 

 
We notice that (xT

λ, yT
λ)

T is the solution to the 
Problem 3, Therefore, left multiplying both sides of (9) 
by (ηT

λ, r
T
λ)

T, we have: 
 

[ ]
1

0
( , ) 0

T T

k

F x y
r r y

λ λ
λ λ

λ λ λ

η η
λ

+

      + =            
 
Adding up (17) and (18) gives: 
 

( ) [ ]
1

, ( ( , ) ( , )) 0
T

T T T
kr F x y F x y r yλ λ λ λ λ λη λ
+

− + ≥
 (20) 

 
Note that: 

[ ] [ ] [ ] [ ]
1 1 1

( ) 0T T T
k k kr y y y y y yλ λ λ λ λ+ − + +

= + = ≤
 

Since y≤0 and [yλ]
1/k

+≥0, Thus (20) leads to: 
  

( ), ( ( , ) ( , )) 0
T

T Tr F x y F x yλ λ λ λη − ≥
 

 
Or  
 

( ), ( ( , ) ( , )) 0
T

T Tr F x y F x yλ λ λ λη − ≤
 

 
So we have: 
 

[ ]
( ( , ) ( , )) 0

[ ]

T

x x x
F x y F x y

y y y

λ λ
λ λ

λ λ

+

+

 −    
+ − ≤    −      

 
It follows that: 
 

 
( ( , ) ( , ))

T
x x

F x y F x y
y y

λ
λ λ

λ

− 
− −    

 

[ ]
( ( , ) ( , ))

[ ]

T
x

F x y F x y
y

λ
λ λ

λ

+

+

 
≤ − − 

               (21) 
 

From the Theorem 1 and the well-known Cauchy-
Schwarz inequality, it follows that: 
 

2

2

xx

y y

λ

λ

α
  

− ≤  
   

1
2

2

[ ]
( , ) ( , )

[ ] k

x C
F x y F x y

y

λ
λ λ

λ λ
+

+

 
− ≤ 

 
 

 
So we have (18).  
 

CONCLUSION 
 

Although we do not make numerical experiments, 
from theoretical results and numerical experiments in 
(8-9), the power penalty approach should be effective 
for obtaining the solution of linear complementarily 
problem. 

This study was supported by Project 70771079 of 
the National Science Foundation of China. 
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