
Research Journal of Applied Sciences, Engineering and Technology 5(5): 1736-1739, 2013

DOI:10.19026/rjaset.5.4930

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: July 27, 2012 Accepted: September 03, 2012 Published: February 11, 2013

Corresponding Author: Junkai Yi, Department of Information Science and Technology, Beijing University of Chemical

Technology, Beijing 100029, China
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

1736

Research Article
Research on Mechanism of Variable Event in CLP System

Jing Wan, Likang Tian, Junkai Yi and Yubin Zhou
Department of Information Science and Technology, Beijing University of

Chemical Technology, Beijing 100029, China

Abstract: Constraint inference engine as the core part of constraint logic programming system comprises variable
set, temporary container and constraint filter and inference engine and adopts branching strategy, exploration
strategy and node backtracking strategy to complete the inference task. This study introduces variable event to
reduce the triggering times of constraint filter and analyzes the trigger probability of inference engine. The
experiments show that variable event setting can enhance the efficiency of constraint inference engine.

Keywords: Constraint logic programming, inference engine, variable event

INTRODUCTION

Constraint logic programming, which combines the

advantages of consistency algorithms and heuristic
search algorithms in artificial intelligence, is one of the
important paradigms for solving discrete domain
constraint problems (Hendler et al., 2006).

Generally, the basic strategy adopted by constraint
logic programming is binary tree search, which begins
from root node in a prescribed way. Once a leaf is
found, an answer is found. The establishment of binary
tree is a modeling process of practical problem, which
involves a series of logic variables as the mathematical
foundation for problem description. Each variable has its
own scope referred to as finite field. Constraint
conditions that should be met by problem description
can be expressed as inter-variable logic constraint,
which is a constraint filter in the search process. What
needs to be solved next is how to get a smaller finite
field so as to satisfy constraint filter. And then the
inference engine of constraint logic programming is
initiated. Inference engine can perform binary tree
search according to the prescribed strategy in a
temporary container. Interactions of variable set,
constraint filter, temporary container and inference
engine collectively constitute constraint inference
engine (Miguel et al., 2008).

Efficiency improvement of constraint inference
engine has become one of the main research directions
for constraint logic programming (Roman et al., 2010).
In order to improve the search efficiency of constraint
logic programming system, enhancement of the pruning
ability of constraint inference engine is the main
approach (Alan et al., 2009), which involves such
strategies as branch algorithm (Asma et al., 2011),

exploration orientation (Samir et al., 2010) and node
backtracking algorithm (Mesyagutov et al., 2012).
Based on these strategies, this study proposes the
classification of variable compression event, which
reduces the accelerated cycles of trigger times of
constraint filter in the inference engine and improves
search efficiency.

VARIABLE EVENT

Search efficiency analysis of constraint inference
engine: Constraint inference engine is composed of
variable set, constraint filer, temporary container and
inference engine. Constraint inference engine has
branching strategy, exploration strategy and node
backtracking strategy, which prescribes the behaviors
of binary tree search. In constraint logic programming,
constraint inference engine is the core, whose efficiency
improvement is important to enhance the search
efficiency. This study proposes the classification of
variable events in the purpose of improving search
efficiency by reducing the search time.

Each inference of constraint inference engine does
not require the involvement of all constraint filters.
Only when a variable’s finite field is changed will the
constraint filter related to this variable be triggered and
participate in the inference. This is the trigger
mechanism of filter for all constraint logic
programming systems. A reduction in finite field of a
variable is defined as a variable event, denoted as Ex. In
order to further enhance the search efficiency, variable
event needs to be processed, by classifying the
constraint filters with respect to a variable according to
the type of variable event. Only when a specific
variable event occurs will the related constraint filter be

Res. J. Appl. Sci. Eng. Technol., 5(5): 1736-1739, 2013

1737

triggered. Variable event setting does not increase
memory consumption but avoids many unnecessary
trigger of constraint filter.

Type of variable event: Suppose the initial discrete

range of x is {w1, w2,…, wn}, then the range of x will be

reduced after wk is filtered out by constraint inference

engine. Variable x before and after the filtering of

constraint inference engine can be expressed by

Formula (1) below:

x ∈ {w1, w2,…, wn}→ x∈{w1,… wk-1, wk+1,…, wn}

 (1)

 As we can see from Formula (1), when some values

are arbitrarily filtered, the form of the finite field of a

variable is changed. Then event type Ex of variable x is

the variation of finite field; Ex is defined as DOMCHG

by definition 1.

Definition 1: For x and its finite field Dx, if Dx′ ⊂ Dx

and Dx′ ≠ Φ, then Ex is defined as DOMCHG in the

process of Dx→ Dx′.

As shown by Formula (2) and (3), if value w1 or wn

is filtered from variable x, constraint inference engine

will define the type of variable event Ex as BOUND,

with a changed boundary of variable range:

x ∈ {w1, w2,…, wn}→x∈{w2, …, wn} (2)

x ∈ {w1, w2, …, wn}→x∈{w1, …, wn-1} (3)

For finite field D, suppose max (D) and min (D)

are respectively the maximum value and the minimum

value and then there is definition 2.

Definition 2: For x and its finite field Dx, if Dx′ ⊂ Dx,

Dx′ ≠ Φ and either of the following two conditions are

satisfied: max (Dx′) <max (Dx) or min (Dx′) >min (Dx),

then Ex is defined as BOUND in the process of Dx→Dx′.

If the range of variable x is reduced to only one

value from many discrete values, constraint inference

engine will define the type of variable event Ex as

SINGLE, which is expressed by Formula (4):

x∈{w1, w2, …, wn} → x∈{wk} (1≤k≤n) (4)

For finite field D, suppose Size (D) the represents

number of possible values in D, then there is

definition 3.

Definition 3: For x and its finite field Dx, if Dx′ ⊂ Dx,

Size (Dx′) = 1, then Ex is defined as SINGLE in the

process of Dx→ Dx′.

Therefore, variable event E has three types:

SINGLE，BOUND and DOMCHG. From the above

three definitions, the following two inferences can be

obtained:

Inference 1: For x and its finite field Dx, if Dx′ ⊂ Dx,

Dx′ ≠ Φ and Ex is defined as SINGLE in the process of

Dx→Dx′, then Ex can also be defined as DOMCHG and

BOUND simultaneously.

Inference 2: For x and its finite field Dx, if Dx′ ⊂ Dx,

Dx′ ≠ Φ and Ex is defined as BOUND in the process of

Dx→Dx′, then Ex can be defined as DOMCHG.

Here we can see that Ex can be defined as more

than one variable event simultaneously, but that is not

to say that Ex is changeable. What is true is that a

variable defined as a certain event type can contain

other events simultaneously. For variable x, SINGLE ⊆

BOUND ⊆ DOMCHG, SINGLE is contained in

BOUND and DOMCHG, while BOUND is contained

in DOMCHG.

VARIABLE EVENT SETTING

When constraint filters are incorporated into

constraint inference engine, relevant variables need to

be standardized and initialized so that the variables can

meet the requirements of constraint inference engine. In

the initialization step, variable event setting can be

performed according to actual contents of constraint

algorithm.

From the above analysis we have known that

variable event can have three types: SINGLE, BOUND

and DOMCHG. In this section, variable event setting

for a specific constraint filter is discussed by taking

linear filter as an example. Formula (5) represents a

linear constraint filter; ai is a non-zero integer constant:

Axa
ni

i

ii =∑
<

= 0

 (5)

where, A is an integer constant. The left side of Formula

(5) can be divided into two parts according to the sign

of ai, as shown in Formula (6):

0 0 0i j

j ni n i n

i i i i j j

i a a

A a x a x a x
<< <

= > <

= = +∑ ∑ ∑ (6)

Suppose max(x) and min(x) respectively represents

the maximum value and minimum value of x. Then

from Formula (6), we can see that the ran ge of xi is:

Res. J. Appl. Sci. Eng. Technol., 5(5): 1736-1739, 2013

1738

0 , 0 ,

0 , 0,

max() min()

min() max()

i j

i j

j ni n

i i j j

a i k a j k

k

k

j ni n

i i j j

a i k a j k

k

A a x a x

x
a

A a x a x

a

<<

> ≠ < ≠

<<

> ≠ < ≠

− −

≤ ≤

− −

∑ ∑

∑ ∑

(ak>0, k<n) (7)

k

nj

kja

jj

ni

kia

ii

k

k

nj

kja

jj

ni

kia

ii

a

xaxaA

x
a

xaxaA

ji

ji

∑∑

∑∑

<

≠<

<

≠>

<

≠<

<

≠>

−−

≤≤

−−

,0,0

,0,0

)min()max(

)max()min(

(ak<0,k<n) (8)

If n - 1 variables have definite single value and

only 1 variable has changeable value range, then

constraint expressed in Formula (9) will come into

effect:

() / ()
j n

i j j i

j i

x A a x a i n
<

≠

= − <∑ (9)

Constraint filter expressed in Formula (9) requires

Formula (6)-(8) to reduce the range of xi. Only when

the boundary of xi is changed will these constraints

come into effect. Therefore, xi variable event can be

defined as BOUND, by Formula (10):

E(xi) = BOUND (10)

Variable event setting for constraint filter must be

determined by the algorithm of this filter. For the same

filter, variable event varies due to variable algorithms.

A good filter algorithm has excellent pruning ability to

reduce the search space and it can substantially enhance

the search efficiency in combination with variable

event.

Trigger times analysis of variable event: The trigger
probability of variable event is mainly reflected in the
trigger times of constraint filter. Suppose the finite field
of variable x is Dx = {w1, w2,…, wk}, where
w1<w2<…<wk and they are all integer numbers. Then,
when DOMCHG happens to x, possible compression of
Dx will occur as follows:

121 ... −

+++
k

kkk CCC = 2
k
- 2 (11)

At this moment, the probability of x triggering

related filter is O (2
k
). When BOUND happens to x,

possible compression of Dx will occur as follows:

1
2

)1(
 1-11)-(−

+
=+…++

kk
kk (12)

At this moment, the probability of x triggering

related filter is (k
2
). When SINGLE happens to x, there

are k types of possible compression of Dx; O (k) is the
probability.

If DOMCHG is a total probability event, which can
be defined as:

P (DOMCHG) = 1 (13)

Then occurrence probability of SINGLE and

BOUND is:

2

1

(1)
1

2(BOUND DOMCHG)
2 -2

2

2 -4

k

k

k k

P

k k
+

+
−

=

+ −
 =

︱ (14)

(SINGLE DOMCHG)
2 -2

k

k
P =︱ (15)

As we can see from the above formula, for a

certain variable, the greater the value of k, the less the
occurrence of SINGLE than that of DOMCHG and
BOUND and the less the occurrence of BOUND is than
that of DOMCHG.

Table 1: Comparison of trigger times before and after the introduction of variable event

Sample Nqueen (100) Magic square (5) Hamilton Photo Robin Larry Bridge

Trigger times before the introduction 102 87 233 302 156 126 119

Trigger times after the introduction 98 76 201 237 69 112 67

Table 2: Comparison of operation time before and after the introduction of variable event (operation time: s)

Sample Nqueen (100) Magic square (5) Hamilton Photo Robin Larry Bridge

T before the introduction 0.53 0.15 22.13 26.05 12.47 3.98 1.14

T after the introduction 0.45 0.14 15.68 18.46 5.750 2.54 0.67

Res. J. Appl. Sci. Eng. Technol., 5(5): 1736-1739, 2013

1739

According to the previous method for constraint

filter trigger, the probability of x triggering related

SINGLE or BOUND filter is O (2k). The probability

analysis of variable event occurrence shows that: when

DOMCHG happens to x, BOUND and SINGLE

constraint filter will not be triggered; when BOUND

happens to x, SINGLE constraint filter will not be

triggered.

EXPERIMENTAL RESULT ANALYSIS

After the introduction of variable event, the

constraint filters are much less triggered during the

search process. The experimental environment for

constraint logic programming is as follows: HP2210b,

T7300, duo CPU 2.0 G, 1 G Memory.

For the sake of comparison, classical problems are used
for constraint solving. The experimental results are
shown in Table 1 and 2. Operation time in the
experiment includes the display time of screen and
therefore the actual solution time is probably less. The
introduction of variable event is of great help for
improving the search efficiency of constraint logic
programming and reducing unnecessary trigger of
constraint filter.

CONCLUSION

Constraint inference engine as the core part of
constraint logic programming comprises variable set,
temporary container and constraint filter and inference
engine and adopts branching strategy, exploration
strategy and node backtracking strategy to complete the
inference task. Search time is one of the main
performance indexes of constraint logic programming
system. This study introduces variable event to reduce
the triggering of constraint filter and analyzes the
trigger probability of inference engine after the

introduction of variable event. Variable event can be
divided into three types: SINGLE, BOUND and
DOMCHG. Accordingly, constraint filter can be also
divided into three types depending on the type of
variable event that triggers the constraint filter:
SINGLE, BOUND and DOMCHG. We have
experimentally verified that variable event setting can
enhance the efficiency of constraint inference engine.

REFERENCES

Alan, M.F, H. Brahim, K. Zeynep, M. Ian and W. Toby,

2009. Filtering algorithms for the multiset ordering

constraint. Artif. Intell., 73(2): 299-328.

Asma, L., L. Pierre and H. Mohamed, 2011. Climbing

depth-Bounded adjacent discrepancy search for

solving hybrid flow shop scheduling problems with

multiprocessor tasks. 8th International Conference

on Integration of AI and OR Techniques in

Constraint Programming for Combinatorial

Optimization Problems, pp: 117-130.

Hendler, J., H. Kitano and B. Nebel, 2006. Handbook

of Constraint Programming. Elsevier, Holland,

Amsterdam.

Mesyagutov, M., G. Scheithauer and G. Belov, 2012.

LP bounds in various constraint programming

approaches for orthogonal packing. Comp. Oper.

Res., 39(10): 2425-2438.

Miguel, A.S., G. Antonio and B. Roman, 2008.

Introduction: Special issue on constraint

satisfaction techniques for planning and scheduling

problems. Eng. Appl. Artif. Intell., 21(5): 679-682.

Roman, B., A.S. Miguel and R. Francesca, 2010.

Constraint satisfaction techniques in planning and

scheduling. J. Intell. Manuf., 21(1): 5-15.

Samir, L., B. Patrice and L. Nicolas, 2010. Advanced

generic neighborhood heuristics for VNS. Eng.

Appl. Artif. Intell., 23(5): 736-764.

