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Research Article 
Reinforcement Learning with FCMAC for TRMS Control 

 

Jih-Gau Juang and Yi-Chong Chiang 
Department of Communications, Navigation and Control Engineering, National 

Taiwan Ocean University, Keelung, 20224, Taiwan 
 

Abstract: This study proposes an intelligent control scheme that integrate reinforcement learning in Fuzzy CMAC 
(FCMAC) for a Twin Rotor Multi-input and multi-output System (TRMS). In the control design, fuzzy CMAC 
controller is utilized to compensate for PID control signal and the reinforcement learning refines the compensation 
to the control signal. CMAC with fuzzy system has better performance than the conventional CMAC in TRMS 
attitude tracking control. With reinforcement learning, the proposed control scheme provides even better 
performance and control for the TRMS. 
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INTRODUCTION 

 
Reinforcement learning is used to the problem that 

faces an agent who wishes to learn its action selection 
function that can lead to an optimal reward, through 
trial-and-error interactions in a dynamic environment 
(Yeh, 2009). The learner is not told which actions to 
take, as in most forms of machine learning, but instead 
must discover which actions yield the most reward by 
trying them (Sutton and Barto, 1998). In the most 
interesting and challenging cases, actions may affect 
not only the immediate reward but also the next 
situation. Reinforcement learning is defined not by 
characterizing learning methods, but by characterizing a 
learning problem. The basic idea is simply to capture 
the most important aspects of the problem facing a 
learning agent interacting with its environment to 
achieve a goal. The agent must be able to sense the state 
of the environment to some extent and must be able to 
take actions that affect the state. To obtain better 
reward, a reinforcement learning agent must prefer 
actions that it has tried in the past and found to be 
effective in producing reward. Reinforcement learning 
has been successfully applied to many control 
problems. It is one of the best learning algorithms for 
systems without desired values (Anderson et al., 2007; 
Valasek et al., 2008). 

In recent years, intelligent system research has 
become main stream in the field of control engineering. 
Control design uses the concept of artificial intelligence 
is often called intelligent control. Although the 
intelligent controller has been widely applied to many 
aspects, but the PID controller is still the most common 
controller in the industry. PID control structure is 

simple and parameter adjustment method is easy (Kuo, 
1995; Krohling and Rey, 2001). But the disadvantage is 
that suitable values for control parameters are not easy 
to obtain. Sometimes the optimization process is very 
time consuming. With the development of intelligent 
control, the shortcomings of the PID control can be 
overcome. There are many types of intelligent 
algorithms, such as neural networks, fuzzy logic 
systems and genetic algorithms (Juang et al., 2011). In 
artificial neural networks, CMAC (Albus, 1975) has 
been used for many applications. Conventional neural 
networks and CMAC are different on weight updating 
rule. CMAC has fast convergence speed and low 
computation time. Hardware implementation of CMAC 
neural network is easy to achieve. In this study, a fuzzy 
reasoning mechanism to obtain the memory mapped 
values of CMAC is applied, which is called FCMAC. 
Adaptive learning rate of CMAC can be obtained (Yang 
and Juang, 2009) by the Lyapunov stability theory. This 
study presents several control methods to control a 
TRMS (Feedback Co, 1998). Controller design is based 
on reinforcement learning, CMAC, FCMAC and PID 
control. The controlled plant, TRMS, is a high order 
nonlinear system with cross coupling effect. The goal 
of this study is to make TRMS move fast, accurate and 
stable to the desired attitude. 

 
METHODOLOGY 

 

System description: Figure 1 shows a diagram of the 

laboratory set-up. There are four variables that are used 

to describe the state of the beam and two additional 

states variables are the angular velocity of the rotors, 

measured by tachometers coupled with the driving DC 
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Fig. 1: The laboratory set-up TRMS 

 

hf FS
vtl αcos s/1 hJ/1 s/1

vf FS
ml s/1 vJ/1 s/1

hk

hvg

vk

( )vf α

trJ

( )vmrJ α

hU

vU

tω hM

mω vM

hS

vS

hΩ

vΩ

( )thα

( )tvα

hG hP

vG vP

 
 

Fig. 2: Block diagram of TRMS model  

 

motors. The horizontal and vertical angles and two 

corresponding angular velocities are measured by 

position sensors in the pivot. The two propellers are 

perpendicular to one another and they are built on a 

beam pivot that can rotate freely on the horizontal plan 

and vertical plane. By changing the input voltage on 

beam pivot we can control the propeller’s rotational 

speed and make it achieve the desired goal. Figure 2 

shows a block diagram of the TRMS model:  

 

where, 

hα   : The horizontal position of the TRMS beam 

vα   : The vertical position of the TRMS beam 

hΩ   : The horizontal angular velocity of the TRMS 

 beam 

vΩ   : The vertical angular velocity of the TRMS beam 

hU   : The horizontal DC-motor voltage input 

vU   : The vertical DC-motor voltage input 

hG   : The linear transfer functions of the tail rotor 

 DC-motor 

vG   : The linear transfer function of the main DC-

 motor 

h  : The nonlinear part of the DC-motor with tail 

 rotor 

v  : The nonlinear part of the DC-motor with main 

 rotor 

hw   : The rotational speed of the tail rotor 

vw   : The rotational speed of the main rotor 

hF   : The nonlinear function of the aerodynamic 

 force from the tail roto 

vF   : The nonlinear function of the aerodynamic 

 force from the main rotor 

hl   : The effective arm of aerodynamic force from 

 the tail rotor 

vl   : The effective arm of aerodynamic force from 

 the main rotor 

hJ  
: The nonlinear function of the moment of 

 inertia with respect to the horizontal axis 

 vJ  
: The nonlinear function of the moment of 

 inertia with respect to the vertical axis 

hM
 
: The horizontal tuning torque 

vM
 
: The vertical tuning torque 

hK   : The horizontal angular momentum 
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vK   : The vertical angular momentum 

hf   : The moment of friction force in the horizontal 

 plane 

vf   : The moment of friction force in the vertical plan 

hvJ
 
: The horizontal angular momentum from the 

 main rotor 

vhJ
 
: The vertical angular momentum from the tail 

 rotor 

 f   : The vertical tuning moment from 

 counterbalance 

vhhvgg : The nonlinear function of the reaction tuning 

  moment 

 

Controller design: Figure 3 shows the proposed 

reinforcement learning with FCMAC control scheme. 

The reinforcement learning is applied to compute a 

compensation for FCMAC command. The 

reinforcement learning supervises the FCMAC 

controller by error between system output and reference 

and then gives rewards to FCMAC command. This 

study presents two ways of obtaining the rewards. 

 

Addition and subtraction: 

 

If e > +t , then ρ−=+ )()1( kgkg  

If e < −t , then ρ+=+ )()1( kgkg  

 

where,  

e  : System error 

+t  & −t  
: Thresholds of error 

cu  
: CMAC control command 

g
 

: A gain to the cu  
ρ : The reward to g

 
k  : The time index 

 

The output of CMAC is then multiplied by )1( +kg  

and new cu  can be obtained as follow: 

 

cc ukgu )1( +=  

 

Use genetic algorithm to search reward: We use a 

Real-valued Genetic Algorithm (RGA) to search 

parameters of reinforcement learning. Initial settings of 

genetic algorithm are: number of patterns is 10, number 

of generations is 50, mating rate is 0.8 and mutation 

rate is 0.2. Fitness function is given as follow: 

 
 
Fig. 3: Reinforcement FCMAC control scheme 
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In A, to set an error threshold, if the system error is 

greater than a preset threshold, the control gain will be 

punished by ρ. On the contrary, if the error is less than 

the threshold, the gain will be rewarded by ρ. This 

method is based on the relationship between the 

reference and system output. If control command is too 

small, then the control command will have the addition 

operation and vice versa, if control command is too 

large, then the control command will have the 

subtraction operation. In B, a RGA is used to search 

appropriate gain value. The most important thing is how 

to determine the fitness function. We choose RGA with 

appropriate initial setting: pattern number, generation 

number, mating, mutation, then the genetic algorithm 

can replace trail-and-error used in A, to obtain optimal 

control gain. 

Cerebellar  model  articulation  controller  (Glanz 

et al., 1991) is a complex nonlinear expression of the 

form of lookup-table and can be considered as a kind of 

neural network. This network may change form content 

through the learning algorithm. CMAC makes system's 

input state as an indicator and stores related information 

in a group of memory cell. It is essentially a kind of 

mapping the complex nonlinear function into a look-up 

table. Specifically, the input space is divided into many 

sub-blocks. Each block specifies a real memory 

location. Each block is used to learn the information 

distributed to the adjacent block’s storage position. 

CMAC has been recognized as class associative 

memory neural network. It can learn any multi-

dimensional nonlinear mapping. CMAC algorithm can 

be effectively used for nonlinear function 

approximation, dynamic modeling, control system 

design, etc. Compared with other neural networks, 

CMAC is based on local learning. Its information is 

stored in partial structure and only few weights are 

updated at each iteration and this makes it appropriate 

for real-time control. As a nonlinear approximation, it is 

insensitive to the order of learning data. The input maps 
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Fig. 4: The conceptual diagram of FCMAC 

 
to the actual memory of the N units. Each stored unit 
with corresponding weight value, CMAC output of the 
N units is a weighted sum of the actual memory cell. 
The difference between FCMAC and CMAC is in the 
mapping part, as shown in Fig. 4. The mapping of 
FCMAC uses fuzzy reasoning mechanism to get 
mapping value. The mapping value can help CMAC 
controller to reduce computing times. The fuzzy 
reasoning mechanism does not increase CMAC 
updating time and computing time. On the
reduces updating time and computing time.

FCMAC includes two kinds of operations that 
calculate the output result and adjust the weight
mapping A→Y is to compute the output as:

 

jwxaxwxy jj

N

j

T 1,)()()( =∑== a

 
where,  
Wj : The weight of the j-th storage hypercube 
aj(x) : A factor obtained from fuzzy reasoning 

mechanism indicating  
 
whether the j-th storage hypercube is addressed by the 
input x. It is to modify the weight of storage 
according to the error between the desired output and 
the real output, in the stage of network learning in 
FCMAC. Its weight updating rule is: 
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where, 
 i  : The i-th iteration 

dy   : The desired output 

 m  : The number of addressed hypercube

α   : The learning rate 

 
In order to improve the shortcoming of 

conventional CMAC on the crisp relation, adaptive 
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the N units. Each stored unit 
with corresponding weight value, CMAC output of the 
N units is a weighted sum of the actual memory cell. 
The difference between FCMAC and CMAC is in the 

4. The mapping of 
FCMAC uses fuzzy reasoning mechanism to get 
mapping value. The mapping value can help CMAC 
controller to reduce computing times. The fuzzy 
reasoning mechanism does not increase CMAC 
updating time and computing time. On the contrary, it 
reduces updating time and computing time. 

two kinds of operations that 
the output result and adjust the weights. The 

is to compute the output as: 

N,.....,2,1  

th storage hypercube  
factor obtained from fuzzy reasoning 

th storage hypercube is addressed by the 
t is to modify the weight of storage hypercube 

according to the error between the desired output and 
the stage of network learning in 
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In order to improve the shortcoming of 
conventional CMAC on the crisp relation, adaptive 

learning rate is introduced. The adaptive CMAC uses a 
set of adaptive learning rates that are derived from 
Lyapunov stability theory: 

 

0
2

2
>> α

a
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where, a is the vector of )(xa j .  

The conventional CMAC has good performance in 
decoupled system of the TRMS, 
cross-coupling system can not be 
this study presents a FCMAC and PID control
to achieve cross-coupling control. The 
the feed-forward control, which is used to compensate 
for the control signal that is applied to the TRMS.
PID controller realizes the feedback 
guarantees system's stability and disturbance re
 

EXPERIMENTAL RESULTS
 
In cross-coupled condition, the task of control is to 

overcome the cross-coupling influence between vertical 
and horizontal axes. Figure 5 to 7 show the 
wave and square wave responses in cross
condition     using     CMAC    controller,
 

2-DOF horizontal simulation

 

 
2-DOF vertical simulation

 

 
Fig. 5: Step response using CMAC    

The adaptive CMAC uses a 
set of adaptive learning rates that are derived from the 

has good performance in 
, but the control of 
 achieved. Therefore 

CMAC and PID control scheme 
The FCMAC realizes 

which is used to compensate 
signal that is applied to the TRMS. The 

feedback control that 
system's stability and disturbance resistance. 

RESULTS 

coupled condition, the task of control is to 
coupling influence between vertical 

5 to 7 show the step, sine 
wave and square wave responses in cross-coupled 

controller,    respectively. 

DOF horizontal simulation 

 

DOF vertical simulation 
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2-DOF horizontal simulation

 
Fig. 6: Square wave response using CMAC 

 
                  2-DOF horizontal simulation

 

 
Fig. 7: Sine wave response using CMAC 

 
                              2-DOF horizontal simulation 

 

 
Fig. 8: Step response using FCMAC 

 

Figure 8 to 10 show the step, sine wave and square wave 

responses in cross-coupled condition using FCMAC 

controller. Figure 11 to 13 show the step, sine wave and 

square wave responses in cross-coupled condition using 
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DOF horizontal simulation                                             2-DOF vertical simulation 

 

 

DOF horizontal simulation                                             2-DOF vertical simulation 

DOF horizontal simulation                                                     2-DOF vertical simulation

8 to 10 show the step, sine wave and square wave 

coupled condition using FCMAC 

11 to 13 show the step, sine wave and 

coupled condition using  

reinforcement FCMAC controller. Compare control 

performances of CMAC, FCMAC 

2011) and reinforcement FCMAC in the cross

condition by total tracking errors in 50 sec, as shown in 

 

 

DOF vertical simulation  

 

reinforcement FCMAC controller. Compare control 

performances of CMAC, FCMAC (Chiang and Juang, 

and reinforcement FCMAC in the cross-coupled 

tal tracking errors in 50 sec, as shown in  
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2-DOF horizontal simulation                                                      2-DOF vertical simulation 

 
 
Fig. 9: Square wave response using FCMAC 

 
                         2-DOF horizontal simulation                                                          2-DOF vertical simulation  

 
 

Fig. 10: Sine wave response using FCMAC 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 

 

Fig. 11: Step response using reinforcement FCMAC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 12: Square wave response using reinforcement FCMAC 
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Fig. 13: Sine wave response using reinforcement FCMAC 

 
Table 1: Comparison of CMAC, FCMAC, and reinforce FCMAC 

Type 

Step 
response 

total error 

Square 
wave total 

error 

Sine wave 

total error 

CMAC Horizontal 21.94 29.45  16.44 

Vertical 14.66 15.08  18.19 
FCMAC Horizontal 21.87 28.90  18.09 

Vertical 12.91 15.35  20.77 

Reinforce 
FCMAC 

Horizontal 18.66 30.13  13.73 
Vertical 7.410 11.38  23.27 

 

Table 1, the proposed reinforcement FCMAC control 

scheme has better average performance than other 

controllers. 

 

CONCLUSION 

 

This study presents the use of conventional CMAC, 

fuzzy CMAC and reinforcement fuzzy CMAC 

controllers to control a twin rotor MIMO system. 

Simulation results show that the proposed reinforcement 

FCMAC controller has better performance in system 

stability and attitude tracking control. In reinforcement 

learning control, compensation gain obtained by the 

addition and subtraction method provides worse 

compensation to the system, even worse than the CMAC 

control. By the use of genetic algorithm to search the 

reward the control system performance is improved 

dramatically. 
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