
Research Journal of Applied Sciences, Engineering and Technology 5(4): 1362-1372, 2013

DOI:10.19026/rjaset.5.4874

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: July 05, 2012 Accepted: August 08, 2012 Published: February 01, 2013

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).
1362

Research Article
Pipelined Viterbi Decoder Using FPGA

Nayel Al-Zubi
Department of Computer Engineering, Al-Balqa Applied University, P.O. Box: 19117, Al-Salt, Jordan,

Tel.: +962-777411142

Abstract: Convolutional encoding is used in almost all digital communication systems to get better gain in BER
(Bit Error Rate) and all applications needs high throughput rate. The Viterbi algorithm is the solution in decoding
process. The nonlinear and feedback nature of the Viterbi decoder makes its high speed implementation harder. One
of promising approaches to get high throughput in the Viterbi decoder is to introduce a pipelining. This study applies
a carry-save technique, which gets the advantage that the critical path in the ACS feedback becomes in one direction
and get rid of carry ripple in the “Add” part of ACS unit. In this simulation and implementation show how this
technique will improve the throughput of the Viterbi decoder. The design complexities for the bit-pipelined
architecture are evaluated and demonstrated using Verilog HDL simulation. And a general algorithm in software
that simulates a Viterbi Decoder was developed. Our research is concerned with implementation of the Viterbi
Decoders for Field Programmable Gate Arrays (FPGA). Generally FPGA's are slower than custom integrated
circuits but can be configured in the lab in few hours as compared to fabrication which takes few months. The
design implemented using Verilog HDL and synthesized for Xilinx FPGA's.

Keywords: Convolutional encoding, FPGA, pipelined, Viterbi decoder

INTRODUCTION

Convolutional codes are preferred over block codes

due to simple decoding using the Viterbi algorithm with
soft-decisions. The convolution coder is often used in
many digital transmission systems (deep space
communication, satellite communication, cellular and
most wireless communication) where the signal to noise
ratio is low. It is also used in storage devices as hard
disks and compact disks to enhance retrieving data and
lengthen the life time of the components (Lin and
Costello, 1982).

 The convolution coder achieves error free
transmission by adding enough redundancy to the
source symbols. The choice of the convolution code
depends mostly on the application which is a matter of
compromise between complexity, power, performance
and bandwidth. In this design, an implementation code
of a pipelined Viterbi decoder is achieved which
supports a convolutional code based on a rate 1/2,
constraint length K = 7 and sequence generating
functions g0 = 1338 and g1 = 1718.

This study will study the effect of the quantizer
limits and the number of the soft-decision bits on the
gain of the Viterbi decoder and the increase in speed of
the Viterbi decoder using pipelining technique with
complexity in hardware, all this carried out using
MATLAB simulation and FPGA cards implementation.

The classical method to realize the Viterbi decoder
is an iterative calculation and memory trace-back,

which is effective for a moderate decoding speed and
long constrain length. For a high-speed decoder,
iterative calculation and memory trace back becomes

Fig. 1: Viterbi decoder main units

the bottlenecks for the throughput which also depends
on the word length. This study presents a pipelined
method to realize the Viterbi decoder using an FPGA,
in which the critical path is broken down saving time
and increasing the speed of the decoder. Other effect on
the Viterbi decoder which could increase the gain of the
decoder and enhancing the Signal-to-Noise Ratio
(SNR) which is affected by the number of the soft-
decision bits and quantizer limits with all these the
throughput can reach 4 times faster than the normal
Viterbi decoder.

Viterbi decoder architecture: The Viterbi Decoder
can be implemented with three basic units as in Fig. 1.
The Branch Metrics Unit (BMU) calculates the branch
metrics for each incoming bit. The Add-Compare Select
Unit (ACSU) adds the branch metrics to the path
metrics to calculate the new path metrics. Then it
compares between the path metrics, the minimum or
maximum, according to the implementation, to select
the best path. The Survivor Memory Unit (SMU)

Res. J. Appl. Sci. Eng. Technol., 5(4): 1362-1372, 2013

1363

Fig. 2: State diagram

processes the outputs of the ACSU to produce the
decoded bits.
The operational speed of the Viterbi decoder is limited
by the ACS unit. To implement high speed Viterbi
decoder, we can introduce pipelining. It is easily to do
that in the BMU and SMU since they are purely
feed forward paths. The problem holds in the ACSU
due to the feedback path. In this unit the paths metrics
are updated each time step, this cause the feedback.
This can be seen from the state diagram in Fig. 2.

Taking a closure look to the state diagram where
the ACSU is showing as in Fig. 3. High throughput-rate
is achieved as we make the critical path very short. The
critical path of a synchronous-circuit is defined as the
path between two buffers (e.g., flip-flops) with the
largest propagation delay and hence determines the
maximum achievable clock frequency of the circuit. As
shown in Fig. 4 the critical path here is in the feedback
loop.

At Bit level, we can show the critical path in detail,
assuming that the word length is 4-Bits. As shown in
Fig. 4 (Fettweis and Meyr, 1991), the critical path

Table 1: Redundancy in CS-representation

ci si vi

0 0 0

0 1 1

1 0 1

1 1 2

extends for 4 adders and 4 maximum (or minimum)

selections. This is for the carry ripple adders, where the

carry should propagate from the LSB to the MSB. The

compare decision should start from the MSB of the

maximum (or minimum) selector down to the LSB

hence, which depends on the word length.

Carry-Save (CS) representation: In carry save

representation, the carry does not propagate to the next

adder; instead it is saved with the sum of the next adder

as shown in Fig. 5b. Figure 5a shows the carry ripple

representation, here the second adder should wait for

the carry of the first adder so the word length affects the

speed of the adder, where in carry save mode the two

adders takes the same time.

In CS the carry and the sum are combined to a new

value, vi = si+ci, which can take on the values vi∈ {0, 1,

2} where the S = Σi (vi) 2
i
= Σi (si+ci) 2

i
.

Carry-Save representation has redundancy entries,

this comes from either (ci = 1 and si = 0) or (ci = 0 and

si = 1), where their sum equals to 1. This is shown in

Table 1.

Fig. 3: A state diagram showing adders and maximum selection

Res. J. Appl. Sci. Eng. Technol., 5(4): 1362-1372, 2013

1364

Fig. 4: State 00 of the state diagram in bit level with word length equal 4, in carry-ripple format

Fig. 5: (a) Carry ripple adder, (b) Carry save adder to add a = a1.2º+a2.2
1 and b = b1.2º+b2.2

1

Carry-Save (CS) maximum selection:

CS comparison technique: Redrawing Fig. 4 using

carry-save maximum selection is shown in Fig. 6. The

function of the CSM (Carry Save Maximum selection)

block (Wicker, 1995; Ciletti, 1999) is to select the

maximum of the inputs A or B, which are in carry save

format. So the output is G = max (A, B), where

� = ∑ ��2���	
�
� , � = ∑
�2���	

�
� and � = ∑ �2���	
�
� ,

�� ,
� , �� ∈ �0, 1, 2�.
The carry save maximum selection starts at MSB

and there is three cases for aMSB and bMSB where, MSB is

w-1 assuming the word length is w-bits. Figure 7 shows

two bits of w-1 and w-2.

Case-1: aw-1-bw-1 = 2: In this case the minimum value of

A is 2
w
 this by setting all ai = 0 for i<w-1. And the

maximum value of B by setting all bi = 2 for i<w-1, is

∑ 2(2�)���
�
� = 2 �	�������

	�� = 2� − 2. So A is always

greater than B, then G = A.

Case-2: aw-1-bw-1 = 0: Here aw-1 = bw-1 and gw-1 = aw-1

or = bw-1, so no decision made here till see the next

stage. And no problem if gw-1 assigned to aw-1 or bw-1.

Case-3: aw-1-bw-1 = 1: This comes from either aw-1 = 1,

bw-1 = 0 or aw-1 = 2, bw-1 = 1. In this case the minimum

value of A is 2
w-1

 this by setting all ai = 0 for i<w-1 and

+

+

c
0

s
1

s
2

c
1

c
2

a
2

b
2

a
1

b
1

+

+
c

0

s
1

s
2

c
1

c
2

a
2

d
2

a
1b
1

d
1

b
2

v
1

v
2

Res. J. Appl. Sci. Eng. Technol., 5(4): 1362-1372, 2013

1365

Fig. 6: State 00 of the state diagram in bit level with word length equal 4, in carry-save maximum format

Fig. 7: CSM of a = aw-1.2

w-1+aw-2.2
w-2 and b = bw-1.2

w-1+bw-

2.2
w-2

the maximum of B by setting all bi = 2 for i<w-1, is

∑ 2(2�)���
�
� = 2 �	�������

	�� = 2� − 2.The difference

Amin- Bmax = 2-2
w-1

. This case is called a pre-decision
for A, since the difference can be greater than, less than
or equal to, no final decision can be made on this bit
level at this case; the decision can be made at the next
level. Where there are three possible cases:

Case-3.1: bw-2 = 0: In this case the minimum of A is 2

w-1

and the maximum of B is 2
w-1

-2, the difference Amin-
Bmax = 2, so that A is the maximum and G = A.

Case-3.2: aw-2 = 0, bw-2 = 1: In this case the minimum of
A is 2

w-1
 and the maximum of B is 2

w-1
-2+2

w-2
, the

difference Amin-Bmax = 2-2
w-2

, again no final decision
can be made at this level as in case 3 above, we should
look at the next level.

Case-3.3: aw-1 = 0, bw-2 = 2: In this case:

aw-1+aw-2 = (1*2
w-1

) + (0*2
w-2

) = 2
w-1

and

bw-1+bw-2 = (0*2
w-1

) + (2*2
w-2

) = 2
w-1

So to this level A equal B and the pre-decision of A is

removed and the decision procedure starts on the next

bit-level. But there is no error as we assign gw-1 = aw-1

and gw-2 = aw-2, since there summation is equal.

These cases are shown in the flow chart for branch

An in Fig. 8 and for branch B in Fig. 9. Where, (δiA=

{cA,sA}-{cB,sB}) represents the deference ai-bi.

The design of the Carry-Save Maximum selection

circuit was proposed in Gemmeke et al. (2002) and

Gierenz et al. (2000) the design based on local

comparison, which is for each branch at each state there

is a CSM selection circuit that compare it's metric with

the maximum of the other branch metrics.

Figure 8 and 9 shows that the pre-decision (dp) flag

determines the maximum bit ai or bi at the current bit.

So by inhibiting the current bits of each branch with its

pre-decision flag and O-ring the two inhibited branches

we get the maximum branch bit at the current bit level,

this illustrated as a function in (1) and (2):

+

+

+

+

CSM

CSM

CSM

CSM

+

+

+

+

λ0
11,κ

λ1
11,κ

λ2
11,κ

λ3
11,κ

λ0
12,κ

λ1
12,κ

λ2
12,κ

λ3
12,κ

a3
s

a
3 c

g3
c/s,k+1

a2
s

a
2 c

a1
s

a
1 c

a0
s

b
3 c

b
2 c

b
1 c

b3
s

b2s

b1
s

b0
s

g2
c/s,k+1

g1
c/s,k+1

g0
c/s,k+1

g3
c/s,k

g2
c/s,k

g1
c/s,k

g0
c/s,k

Res. J. Appl. Sci. Eng. Technol., 5(4): 1362-1372, 2013

1366

Fig. 8: The maximum selection flow chart, indicating the deference ai-bi, which is local for branch A

Fig. 9: The maximum selection flow chart, indicating the deference bi-ai, which is local for branch B

cmax = ((dpa . ca) + (dpb . cb)) (1)

smax = ((dpa . sa) + (dpb . sb)) (2)

We modified this algorithm to work as minimum

selection, this done by inverting the bits of each branch
that entering the compare block and then inverting the
output bits.

~cmax = ((dpa. ~ca) + (dpb. ~cb)) (3)

~smax = ((dpa. ~sa) + (dpb. ~sb)) (4)

CS redundancy suppression: The first step in
designing of the Carry-Save Maximum selection is the
redundancy suppression circuit (Gemmeke et al., 2002;
Gierenz et al., 2000) to eliminate the redundancy entry

Fig. 10: Redundancy suppression circuit, with input and

output table

in the Table 1 to simplify and reduce the complexity of

the maximum selection circuit. This is shown In

Fig. 10.

CS truth table and decision flags: Figure 8 shows the
two required indicators for each branch. One indicates
the pre-decision (dp) and the other indicates the final
decision (df). These flags should represent the five
states in Fig. 8 and 9, this shown in Table 2.

S1

C1

C2

S2 C1 S1 C2 S2

 0 0 0 0

 0 1 0 1

 1 0 0 1

 1 1 1 1

Input Output

Res. J. Appl. Sci. Eng. Technol., 5(4): 1362-1372, 2013

1367

Table 2: Indication of decision flags
da

i-1
f da

i-1
p db

i-1
f db

i-1
p Indication

1 1 0 0 Final decision A A>B
0 0 1 1 Final decision B A<B
1 1 1 1 A = B
1 1 1 0 Pre-decision of A (no final

decision can be made)
1 0 1 1 Pre-decision of B (no final

decision can be made)

Fig. 11: Block diagram of current and next decision flags and

current bits of branch A and B

To take into consideration the following bits of the

word length, the difference of the following bits should

be inhibited by the decision flags. Table 3 shows the

possible values of the input current decision flags (dp
i
a,

df
i
a, dp

i
b, df

i
b). The input difference of the current bits

δi = {ca, sa}-{cb, sb} and the next output decision flags

(dp
i-1

a, df
i-1

a, dp
i-1

b, df
i-1

b) for the five states {(A = B),

(A>B), (A<B), (pre-decision A), (pre-decision B)},

Where Table 2 represents the truth table of Fig. 11.

CS circuit implementation: Logic minimization to

Table 2 gives the following logic functions of dp
i-1

a, df
i-

1
a, dp

i-1
b and df

i-1
b (2, 1-4), these functions and there

circuit diagrams obtained by Electronic Workbench

program which has the ability to do conversions

between truth table, function and circuit

implementation.

df
 i-1

a = {(dp
i
a(df

i
a (C'a+S'a))) +

 (dp
i
a (df

i
a (C'aS'a))) + (dp

i
a (dp

i
b (C'bS'b))') +

 ((df
i
a (C'aS'a)) (dp

i
b (C'bS'b))') +

 ((df
i
a (C'a+S'a)) (dp

i
b (C'b+S'b))')} (5)

df
 i-1

b = {(dp
i
b (df

i
b (C'b+S'b))) +

(dp
i
b (df

i
b (C'bS'b))) + (dp

i
b

(dp
i
a (C'aS'a))') + ((df

i
b (C'bS'b))

(dp
i
a (C'aS'a))') + ((df

i
b (C'b+S'b))

(dp
i
a (C'a+S'a))')} (6)

Table 3: Possible values of next decision flags (dpi-1
a, dfi-1

a, dpi-1
b, and dfi-1

b)

Inputs

Outputs

ca sa cb sb δi A?B dpi
a dfi

a dpi
b dfi

b dpi-1
a dfi-1

a dpi-1
b dfi-1

b

0 0 1 1 -2 A = B 1 1 1 1 0 0 1 1
0 0 0 1 -1 1 1 1 1 0 1 1 1
0 1 1 1 -1 1 1 1 1 0 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 1 0 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1 1 1 1 1
0 1 0 0 +1 1 1 1 1 1 1 0 1
1 1 0 1 +1 1 1 1 1 1 1 0 1
1 1 0 0 +2 1 1 1 1 1 1 0 0
0 0 1 1 -2 Pre-decision A 1 1 0 1 1 1 1 1
0 0 0 1 -1 1 1 0 1 1 1 0 1
0 1 1 1 -1 1 1 0 1 1 1 0 1
0 0 0 0 0 1 1 0 1 1 1 0 0
0 1 0 1 0 1 1 0 1 1 1 0 0
1 1 1 1 0 1 1 0 1 1 1 0 0
0 1 0 0 +1 1 1 0 1 1 1 0 0
1 1 0 1 +1 1 1 0 1 1 1 0 0
1 1 0 0 +2 1 1 0 1 1 1 0 0
x x x x x A>B 1 1 0 0 1 1 0 0
x x x x x A<B 0 0 1 1 0 0 1 1
0 0 1 1 -2 Pre-decision B 0 1 1 1 0 0 1 1
0 0 0 1 -1 0 1 1 1 0 0 1 1
0 1 1 1 -1 0 1 1 1 0 0 1 1
0 0 0 0 0 0 1 1 1 0 0 1 1
0 1 0 1 0 0 1 1 1 0 0 1 1
1 1 1 1 0 0 1 1 1 0 0 1 1
0 1 0 0 +1 0 1 1 1 0 1 1 1
1 1 0 1 +1 0 1 1 1 0 1 1 1
1 1 0 0 +2 0 1 1 1 1 1 1 1

Res. J. Appl. Sci. Eng. Technol., 5(4): 1362-1372, 2013

1368

Fig. 12: Simple block diagram of the coding and decoding system

Fig. 13: Interface panel for MATLAB simulation program

dp

 i-1
a = {(dp

i
a (df

i
a (C'aS'a))) +

(dp
i
a (df

i
a (C'a+S'a))(dp

i
b (C'bS'b))') +

(dp
i
a (df

i
a (C'a+S'a))') + ((df

i
a

((C'aS'a))) (dp
i
b (C'bS'b))'(dp

i
b (C'b+S'b))')} (7)

dp

 i-1
b = {(dp

i
b (df

i
b (C'aS'b))) +

(dp
i
b (df

i
b (C'b+S'b))(dp

i
a (C'aS'a))') +

(dp
i
b (df

i
b (C'b+S'b))') +

((df
i
b ((C'bS'b)))(dp

i
a (C'aS'a))'

(dp
i
a (C'a+S'a))')} (8)

Viterbi decoder performance simulations: The high
level coding and decoding simulation of the Viterbi
decoder was performed by MATLAB and Simulink.
The built in Viterbi decoder of Simulink was used to
verify our algorithm that was coded in MATLAB.
Simple block diagram of the system is shown in
Fig. 12. In the encoder simulation, the input data is

convolutional encoded according to the IEEE industry-
standard 802.11a generator polynomials, g0 = 1338 and
g1 = 1718 of rate R = 1/2 and then modulated as BPSK.
The channel model consists of an additive white
Gaussian noise source to add noise to the modulated
bits according to the SNR setup. The receiver
demodulates the data to produce 4 bit quantized soft
decision provided to the Viterbi decoder. A bit error
rate comparator compares the decoded data with the
source one to get the bit error rate. The interface panel
for the MATLAB simulation program is shown in
Fig. 13 the user can enter all parameters where this
simulation environment can be modified to evaluate
their effect on the Viterbi decoder performance.

The first entry box lets the user enters the number
of soft decision bits that quantizes the received data to
2^ (soft-bits) levels. The second entry gives the choice
of truncation of the received bits, that is, determination

Res. J. Appl. Sci. Eng. Technol., 5(4): 1362-1372, 2013

1369

Fig. 14: Simulink block diagram

of limits of the quantizer, to be at the constellation
points or beyond them. Signal-to-Noise ratio
(SNR = Eb/No) is entered in dB as a parameter in the
third entry. SNRdB = log (Eb/No), from this
Eb = No*10^

(SNR
dB

)
 and for BPSK there is one bit

per symbol so Eb = Es. The packet size can be varied
in the fourth entry, where the last entry box for the
generated sequences to be entered.

The MATLAB code was written in two versions.
One implements the carry-ripple Viterbi decoder and
the other implements the pipelined carry-save were the
Simulink simulate the Viterbi decoder in carry-ripple
architecture. All architectures show exact simulation
results for the same parameters.

The blocks of the Simulink are shown in Fig. 14.
The first block generates packets of random binary data
of fixed length using Bernoulli model. These bits feed a
pad block that appends zeros to each packet to flush the
encoder that is, ending at state zero for each frame. A
convolutional encoder encodes the packet according to
the given sequence functions. Then these bits are
modulated as BPSK. At the receiver a quantizer with
given number of soft bits and truncation point quantize
the data. Viterbi decoder decodes the quantized data.
Then bit error rate calculations are done on the decoded
data and the source data.

Since the convolution code is standardized by the
802.11 committee, its performance should be
acceptable to that of multi-path channels. Our
verification consisted of exact performance of the bit
level pipelined implementation to that of standard
implementation. This is sufficient for testing using one
channel model. We expect the performance of our
implementation to match the standard for any channel
type. Since hardware level simulations take
considerably larger times, we did not perform multi-
path simulations at hardware level.

Coding gain vs. soft-decision bits: The number of
soft-decision bits affects the gain of the code. The

Fig. 15: BER vs. SNR for different soft-decision bits, for
IEEE standard with code g0 = 1338 and g1 = 1718 of
rate R = 1/2, with peak = 2

Fig. 16: BER vs. SNR for different soft-decision bits, for

UMTS standard with code g0 = 5578, g1 = 6638 and

g2 = 7118 of rate R = 1/3, with peak = 2

simulation results are shown in Fig. 15. We see from

the figure an increase in gain between 3-bits and 4-

bits; however more than 4-bits gives very low

increase in gain.

10
-3

10
-2

10
-1

10
0

-0.5 0 0.5 1.0 1.5 2.0 2.5

SNR

B
E

R

2
3
4
5
6
7

IEEE standard of 802.11a simulation of
 soft-bit decision 2,3,4,5,6,7

10
-7

10
-5

10
-3

10
-1

-0.5 0 0.5 1.0 1.5 2.0

SNR (dB)

B
E

R

2
3
4
5
6
7

pkt-size = 10,000 no-pkt = 10,000
 for soft-bits = 2,3,4,5,6,7

10
-6

10
-4

10
-2

Res. J. Appl. Sci. Eng. Technol., 5(4): 1362-1372, 2013

1370

Fig. 17: Limits of the quantizer at the constellation points (+1, -1)

Fig. 18: Limits of the quantizer at (+2, -2) where the constellation points at (+1, -1)

Fig. 19: Quantizer limits (+2, -2) and (+1, -1) effect on the

code gain

Figure 16 shows the variation of the soft-decision

bits on the error rate vs. signal -to- noise ratio of the

UMTS convolutional encoding of generating sequences

g0 = 5579, g1 = 6639, g2 = 7119 of R = 1/3 and constraint

length = 9. It also shows good enhancement in BER for

4-bits soft-decision over the 3-bits. Increasing soft-

decision bits more than 4-bits gives little gain as shown.

Coding gain vs. peaks points (limits of the

quantizer): The limiting of the incoming data affects

mostly the BER. This value is determined by the peak

value. Figure 17 shows the quantizer with limits at the

constellation points +1, -1, where Fig. 18 shows the

limits of the quantizer at +2, -2 points, with

constellation points at the +1, -1. For the two cases

the range is divided into the same number of levels are

kept.

Figure 19 shows the effect of the quantizer limits

on the 3-bits and 4-bits soft-decision bits. From the

Fig. 19 we notice an approximately 0.5 dB gain for

peak = 2 over peak = 1.

Viterbi decoder circuit implementation: The Viterbi

decoder design was captured with Vierlog HDL and

simulated by Verilogger and Modelsim programs and

synthesized by ISE Xilinx on a Virtex_II FPGA

platform. A high level model was written in MATALB

and Simulink to carry out all the necessary simulation

performance for different parameters.

SYNTHESIS RESULTS

After the Viterbi decoder is verified by Simulink, it

was synthesized by Xilinx (2000) ISE 5.1i development

tool to prototype on an FPGA chip. We synthesis the

two versions of Verilog HDL code that of carry-ripple

and carry-save techniques. Figure 20 shows timing

report of the two techniques; it shows the speed

improvement of the pipelined carry-save technique over

the carry ripple one, by a factor of 4.09.

Figure 21 shows the hardware complexity of the

two versions before and after pipelining. Pipelining

needs more hardware to accommodate the cut sets,

redundancy suppression circuits and latency of the

pipelining.

Many designs of the Viterbi decoder are

implemented without taking the pipelining technique

into consideration, while Santhi et al. (2008) designed a

-1 volt +1 volt

Quantized noisy received bits

To 3-bit Soft decision

-3 -2 -1 0 +1 +2 +3

“1” “0”

+2 volt-2 volt

Any value less than -3

limited to -3

Any value greater than +3

limited to +3

10
-3

10
-2

10
-1

10
0

-0.5 0 0.5 1.0 1.5 2.0 2.5

SNR

B
E

R

 IEEE standard of 802.11a simulation of
 soft-decision points 3,4 with variation of the peaks.
 (limts of the quantizer)

3-bits at peak point 2
3-bits at peak point 1
4-bits at peak point 2

4-bits at peak point 1

Res. J. Appl. Sci. Eng. Technol., 5(4): 1362-1372, 2013

1371

Fig. 20: Timing report of viterbi decoder verilog HDL code of the two versions before and after pipelining

Fig. 11: Hardware complexity report of Viterbi decoder Verilog HDL code of the two versions before and after pipelining

Viterbi decoder using pipelining and reached a 2.3
times faster than the decoder without pipelining.

CONCLUSION

This study presents a comprehensive methodology

for the design of a high-speed radix-2 64-state
rate = 1/2 IEEE 802.11A/G Viterbi decoder, prototyped
in an FPGA chip, where carry-save addition technique
is used in developing the Viterbi decoder design. It was
shown how efficiently this technique improves the
speed of the Viterbi decoder approximately by a factor
of 4, with more hardware complexity. In our high-level
simulation we focus on the matching of the BER
performance of this technique with ordinary carry-

ripple addition. We perform a soft-decision simulation,
which shows a gain of 0.125 dB of 4-bit over 3-bit
quantizer. And another simulation shows 0.25 dB gain
if limits of the quantizer are beyond the constellation
points.

REFERENCES

Ciletti, M., 1999, Modeling, Synthesis and Rapid

Prototyping with Verilog HDL. 1rst Edn., Prentice

Hall, New Jersey.

Fettweis, G. and H. Meyr, 1991. High-speed parallel

viterbi decoding: Algorithm and VLSI-architecture.

IEEE Commun. Mag., 29(8): 46-55.

Res. J. Appl. Sci. Eng. Technol., 5(4): 1362-1372, 2013

1372

Gemmeke, T., M. Gansen and T. Noll, 2002.

Implementation of scalable power and area

efficient high-throughput viterbi decoders. IEEE

J. Solid-State Circ., 37(7): 941-948.

Gierenz, V., O. Weib, T. Noll, I. Carew, J. Ashley and

R. Karabed, 2000. A 550-Mb/s radix-4 bit-level

pipelined 16-state 0.25 µmCMOS Viterbi decoder.

Proceedings IEEE International Conference on

Application-Specific Systems, Architectures and

Processors, pp: 195-201.

Lin, S. and D. Costello, 1982. Error Control Coding:

Fundamentals and Applications. 1st Edn., Prentice

Hall, New Jersey.

Santhi, M., G. Lakshminarayanan and S. Varadhan,

2008. FPGA based asynchronous pipelined viterbi

decoder using two phase bundled-data protocol.

International SoC Design Conference, pp:

I314-I317.

Wicker, S., 1995. Error Control Systems for Digital

Communication and Storage. 1st Edn., Prentice

Hall, New Jersey.

Xilinx, Inc., 2000. Virtex-II Platform FPGA Handbook.

Xilinx, San Jose, CA, pp: 560.

