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Abstract: Convolutional encoding is used in almost all digital communication systems to get better gain in BER 
(Bit Error Rate) and all applications needs high throughput rate. The Viterbi algorithm is the solution in decoding 
process. The nonlinear and feedback nature of the Viterbi decoder makes its high speed implementation harder. One 
of promising approaches to get high throughput in the Viterbi decoder is to introduce a pipelining. This study applies 
a carry-save technique, which gets the advantage that the critical path in the ACS feedback becomes in one direction 
and get rid of carry ripple in the “Add” part of ACS unit. In this simulation and implementation show how this 
technique will improve the throughput of the Viterbi decoder. The design complexities for the bit-pipelined 
architecture are evaluated and demonstrated using Verilog HDL simulation. And a general algorithm in software 
that simulates a Viterbi Decoder was developed. Our research is concerned with implementation of the Viterbi 
Decoders for Field Programmable Gate Arrays (FPGA). Generally FPGA's are slower than custom integrated 
circuits but can be configured in the lab in few hours as compared to fabrication which takes few months. The 
design implemented using Verilog HDL and synthesized for Xilinx FPGA's. 
 
Keywords: Convolutional encoding, FPGA, pipelined, Viterbi decoder 

 
INTRODUCTION 

 
Convolutional codes are preferred over block codes 

due to simple decoding using the Viterbi algorithm with 
soft-decisions. The convolution coder is often used in 
many digital transmission systems (deep space 
communication, satellite communication, cellular and 
most wireless communication) where the signal to noise 
ratio is low. It is also used in storage devices as hard 
disks and compact disks to enhance retrieving data and 
lengthen the life time of the components (Lin and 
Costello, 1982). 

 The convolution coder achieves error free 
transmission by adding enough redundancy to the 
source symbols. The choice of the convolution code 
depends mostly on the application which is a matter of 
compromise between complexity, power, performance 
and bandwidth. In this design, an implementation code 
of a pipelined Viterbi decoder is achieved which 
supports a convolutional code based on a rate 1/2, 
constraint length K = 7 and sequence generating 
functions g0 = 1338 and g1 = 1718. 

This study will study the effect of the quantizer 
limits and the number of the soft-decision bits on the 
gain of the Viterbi decoder and the increase in speed of 
the Viterbi decoder using pipelining technique with 
complexity in hardware, all this carried out using 
MATLAB simulation and FPGA cards implementation. 

The classical method to realize the Viterbi decoder 
is an iterative calculation and memory trace-back, 

which is effective for a moderate decoding speed and 
long constrain length. For a high-speed decoder, 
iterative   calculation  and  memory trace back becomes 

 
 
Fig. 1: Viterbi decoder main units 

 
the bottlenecks for the throughput  which  also  depends  
on the word length. This study presents a pipelined 
method to realize the Viterbi decoder using an FPGA, 
in which the critical path is broken down saving time 
and increasing the speed of the decoder. Other effect on 
the Viterbi decoder which could increase the gain of the 
decoder and enhancing the Signal-to-Noise Ratio 
(SNR) which is affected by the number of the soft-
decision bits and quantizer limits with all these the 
throughput can reach 4 times faster than the normal 
Viterbi decoder. 
 
Viterbi decoder architecture: The Viterbi Decoder 
can be implemented with three basic units as in Fig. 1. 
The Branch Metrics Unit (BMU) calculates the branch 
metrics for each incoming bit. The Add-Compare Select 
Unit (ACSU) adds the branch metrics to the path 
metrics to calculate the new path metrics. Then it 
compares between the path metrics, the minimum or 
maximum, according to the implementation, to select 
the  best  path.  The  Survivor   Memory  Unit (SMU)  
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Fig. 2: State diagram 

 
processes the outputs of the ACSU to produce the 
decoded bits.  
The operational speed of the Viterbi decoder is limited 
by the ACS unit. To implement high speed Viterbi 
decoder, we can introduce pipelining. It is easily to    do   
that   in   the  BMU  and  SMU  since  they  are purely 
feed forward paths. The problem holds in the ACSU 
due to the feedback path. In this unit the paths metrics 
are updated each time step, this cause the feedback. 
This can be seen from the state diagram in Fig. 2.  

Taking a closure look to the state diagram where 
the ACSU is showing as in Fig. 3. High throughput-rate 
is achieved as we make the critical path very short. The 
critical path of a synchronous-circuit is defined as the 
path between two buffers (e.g., flip-flops) with the 
largest propagation delay and hence determines the 
maximum achievable clock frequency of the circuit. As 
shown in Fig. 4 the critical path here is in the feedback 
loop.  

At Bit level, we can show the critical path in detail, 
assuming that the word length is 4-Bits. As shown in 
Fig. 4  (Fettweis   and  Meyr,  1991),   the   critical  path   

Table 1: Redundancy in CS-representation 

ci si vi 

0 0 0 

0 1 1 

1 0 1 

1 1 2 

 

extends  for  4  adders  and  4  maximum  (or minimum) 

selections. This is for the carry ripple adders, where the 

carry should propagate from the LSB to the MSB. The 

compare decision should start from the MSB of the 

maximum (or minimum) selector down to the LSB 

hence, which depends on the word length. 

 

Carry-Save (CS) representation: In carry save 

representation, the carry does not propagate to the next 

adder; instead it is saved with the sum of the next adder 

as shown in Fig. 5b. Figure 5a shows the carry ripple 

representation, here the second adder should wait for 

the carry of the first adder so the word length affects the 

speed of the adder, where in carry save mode the two 

adders takes the same time. 

In CS the carry and the sum are combined to a new 

value, vi = si+ci, which can take on the values vi∈ {0, 1, 

2} where the S = Σi (vi) 2
i 
= Σi (si+ci) 2

i
.  

Carry-Save representation has redundancy entries, 

this  comes from either (ci = 1 and si = 0) or (ci = 0 and 

si = 1),  where  their  sum equals to 1. This is shown in 

Table 1. 

 

 
Fig. 3: A state diagram showing adders and maximum selection 
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Fig. 4: State 00 of the state diagram in bit level with word length equal 4, in carry-ripple format 

 

                                
 

Fig. 5: (a) Carry ripple adder, (b) Carry save adder to add a = a1.2º+a2.2
1 and b = b1.2º+b2.2

1 

 

Carry-Save (CS) maximum selection: 

CS comparison technique: Redrawing Fig. 4 using 

carry-save maximum selection is shown in Fig. 6. The 

function of the CSM (Carry Save Maximum selection) 

block (Wicker, 1995; Ciletti, 1999) is to select the 

maximum of the inputs A or B, which are in carry save 

format. So the output is G = max (A, B), where 

� = ∑ ��2���	
�
� , � = ∑ 
�2���	

�
�  and � = ∑ �2���	
�
� , 

�� , 
� , �� ∈ �0, 1, 2�. 
The carry save maximum selection starts at MSB 

and there is three cases for aMSB and bMSB where, MSB is 

w-1 assuming the word length is w-bits. Figure 7 shows 

two bits of w-1 and w-2.  

Case-1: aw-1-bw-1 = 2: In this case the minimum value of 

A is 2
w
 this by setting all ai = 0 for i<w-1. And the 

maximum value of B by setting all bi = 2 for i<w-1, is   

∑ 2(2�)���
�
� = 2 �	�������

	��  = 2� − 2. So A is always 

greater than B, then G = A. 

 

Case-2: aw-1-bw-1 = 0:   Here  aw-1 = bw-1 and gw-1 = aw-1 

or = bw-1, so no decision made here till see the next 

stage. And no problem if gw-1 assigned to aw-1 or bw-1. 

 

Case-3: aw-1-bw-1 = 1: This comes from either aw-1 = 1, 

bw-1 = 0 or aw-1 = 2, bw-1 = 1. In this case the minimum 

value of A is 2
w-1

 this by setting all ai = 0 for i<w-1 and 
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Fig. 6: State 00 of the state diagram in bit level with word length equal 4, in carry-save maximum format 

 

 
 
Fig. 7: CSM of a = aw-1.2

w-1+aw-2.2
w-2 and b = bw-1.2

w-1+bw-

2.2
w-2
  

 
the maximum of B by setting all bi = 2 for i<w-1, is 

∑ 2(2�)���
�
� = 2 �	�������

	��  = 2� − 2.The difference 

Amin- Bmax = 2-2
w-1

. This case is called a pre-decision 
for A, since the difference can be greater than, less than 
or equal to, no final decision can be made on this bit 
level at this case; the decision can be made at the next 
level. Where there are three possible cases: 
 
Case-3.1: bw-2 = 0: In this case the minimum of A is 2

w-1
 

and the maximum of B is 2
w-1

-2, the difference Amin-
Bmax = 2, so that A is the maximum and G = A. 
 
Case-3.2: aw-2 = 0, bw-2 = 1: In this case the minimum of 
A is 2

w-1
 and the maximum of B is 2

w-1
-2+2

w-2
, the 

difference Amin-Bmax = 2-2
w-2

, again no final decision 
can be made at this level as in case 3 above, we should 
look at the next level. 

Case-3.3: aw-1 = 0, bw-2 = 2: In this case:  
 

aw-1+aw-2 = (1*2
w-1

) + (0*2
w-2

) = 2
w-1

   
 
and      
 

bw-1+bw-2 = (0*2
w-1

) + (2*2
w-2

) = 2
w-1  

 
So to this level A equal B and the pre-decision of A is 

removed and the decision procedure starts on the next 

bit-level. But there is no error as we assign gw-1 = aw-1 

and gw-2 = aw-2, since there summation is equal.  

These cases are shown in the flow chart for branch 

An in Fig. 8 and for branch B in Fig. 9. Where, (δiA= 

{cA,sA}-{cB,sB}) represents the deference ai-bi. 

The design of the Carry-Save Maximum selection 

circuit was proposed in Gemmeke et al. (2002) and 

Gierenz et al. (2000) the design based on local 

comparison, which is for each branch at each state there 

is a CSM selection circuit that compare it's metric with 

the maximum of the other branch metrics. 

Figure 8 and 9 shows that the pre-decision (dp) flag 

determines the maximum bit ai or bi at the current bit. 

So by inhibiting the current bits of each branch with its 

pre-decision flag and O-ring the two inhibited branches 

we get the maximum branch bit at the current bit level, 

this illustrated as a function in (1) and (2): 
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Fig. 8: The maximum selection flow chart, indicating the deference ai-bi, which is local for branch A 

 

 
 
Fig. 9: The maximum selection flow chart, indicating the deference bi-ai, which is local for branch B 

 
cmax = ((dpa . ca) + (dpb . cb))                                (1) 
 
smax = ((dpa . sa) + (dpb . sb))                    (2) 

 
We modified this algorithm to work as minimum 

selection, this done by inverting the bits of each branch 
that entering the compare block and then inverting the 
output bits.  

 
~cmax = ((dpa. ~ca) + (dpb. ~cb))                            (3) 

 
~smax = ((dpa. ~sa) + (dpb. ~sb))                             (4) 

 
CS redundancy suppression: The first step in 
designing of the Carry-Save Maximum selection is the 
redundancy suppression circuit (Gemmeke et al., 2002; 
Gierenz et al., 2000) to eliminate the redundancy entry  

 
 
Fig. 10: Redundancy suppression circuit, with input and 

output table 

 

in the Table 1 to simplify and reduce the complexity of 

the  maximum  selection  circuit.  This  is  shown In 

Fig. 10.  

 
CS truth table and decision flags: Figure 8 shows the 
two required indicators for each branch. One indicates 
the pre-decision (dp) and the other indicates the final 
decision (df). These flags should represent the five 
states in Fig. 8 and 9, this shown in Table 2.  

S1

C1

C2

S2 C1  S1   C2  S2

 0     0     0     0

 0     1     0     1

 1     0     0     1

 1     1     1     1

Input    Output
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Table 2: Indication of decision flags 
da

i-1
f da

i-1
p db

i-1
f db

i-1
p Indication 

1 1 0 0 Final decision A  A>B 
0 0 1 1 Final decision B  A<B 
1 1 1 1 A = B  
1 1 1 0 Pre-decision of A (no final 

decision can be made) 
1 0 1 1 Pre-decision of B (no final 

decision can be made) 

 

 
 
Fig. 11: Block diagram of current and next decision flags and 

current bits of branch A and B 

 
To take into consideration the following bits of the 

word  length, the difference of the following bits should 
 

be inhibited  by  the  decision  flags.  Table 3 shows the 

possible values of the input current decision flags (dp
i
a, 

df
i
a, dp

i
b, df

i
b).  The input difference of the current bits 

δi = {ca, sa}-{cb, sb} and the next output decision flags 

(dp
i-1

a, df
i-1

a, dp
i-1

b, df
i-1

b) for the five states {(A = B), 

(A>B), (A<B), (pre-decision A), (pre-decision B)}, 

Where Table 2 represents the truth table of Fig. 11. 

 

CS circuit implementation: Logic minimization to 

Table 2 gives the following logic functions of dp
i-1

a, df
i-

1
a, dp

i-1
b and df

i-1
b (2, 1-4), these functions and there 

circuit diagrams obtained by Electronic Workbench 

program which has the ability to do conversions 

between truth table, function and circuit 

implementation.  

 

df
 i-1

a = {(dp
i
a(df

i
a (C'a+S'a))) +  

       (dp
i
a (df

i
a (C'aS'a))) + (dp

i
a (dp

i
b (C'bS'b))') + 

       ((df
i
a (C'aS'a)) (dp

i
b (C'bS'b))') +  

       ((df
i
a (C'a+S'a)) (dp

i
b (C'b+S'b))')}                          (5)   

  

df
 i-1

b = {(dp
i
b (df

i
b (C'b+S'b))) + 

(dp
i
b (df

i
b (C'bS'b))) + (dp

i
b  

(dp
i
a (C'aS'a))') + ((df

i
b (C'bS'b)) 

(dp
i
a (C'aS'a))') + ((df

i
b (C'b+S'b)) 

(dp
i
a (C'a+S'a))')}                 (6)

Table 3: Possible values of next decision flags (dpi-1
a, dfi-1

a, dpi-1
b, and dfi-1

b) 

Inputs 
----------------------------------------------------------------------------------------------------------------- 

Outputs 
----------------------------------------- 

ca sa cb sb δi A?B dpi
a dfi

a dpi
b dfi

b dpi-1
a dfi-1

a dpi-1
b dfi-1

b 

0 0 1 1 -2 A = B 1 1 1 1 0 0 1 1 
0 0 0 1 -1 1 1 1 1 0 1 1 1 
0 1 1 1 -1 1 1 1 1 0 1 1 1 
0 0 0 0 0 1 1 1 1 1 1 1 1 
0 1 0 1 0 1 1 1 1 1 1 1 1 
1 1 1 1 0 1 1 1 1 1 1 1 1 
0 1 0 0 +1 1 1 1 1 1 1 0 1 
1 1 0 1 +1 1 1 1 1 1 1 0 1 
1 1 0 0 +2 1 1 1 1 1 1 0 0 
0 0 1 1 -2 Pre-decision A 1 1 0 1 1 1 1 1 
0 0 0 1 -1 1 1 0 1 1 1 0 1 
0 1 1 1 -1 1 1 0 1 1 1 0 1 
0 0 0 0 0 1 1 0 1 1 1 0 0 
0 1 0 1 0 1 1 0 1 1 1 0 0 
1 1 1 1 0 1 1 0 1 1 1 0 0 
0 1 0 0 +1 1 1 0 1 1 1 0 0 
1 1 0 1 +1 1 1 0 1 1 1 0 0 
1 1 0 0 +2 1 1 0 1 1 1 0 0 
x x x x x A>B 1 1 0 0 1 1 0 0 
x x x x x A<B 0 0 1 1 0 0 1 1 
0 0 1 1 -2 Pre-decision B 0 1 1 1 0 0 1 1 
0 0 0 1 -1 0 1 1 1 0 0 1 1 
0 1 1 1 -1 0 1 1 1 0 0 1 1 
0 0 0 0 0 0 1 1 1 0 0 1 1 
0 1 0 1 0 0 1 1 1 0 0 1 1 
1 1 1 1 0 0 1 1 1 0 0 1 1 
0 1 0 0 +1 0 1 1 1 0 1 1 1 
1 1 0 1 +1 0 1 1 1 0 1 1 1 
1 1 0 0 +2 0 1 1 1 1 1 1 1 
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Fig. 12: Simple block diagram of the coding and decoding system 

 

 
 

Fig. 13: Interface panel for MATLAB simulation program 

 
dp

 i-1
a = {(dp

i
a (df

i
a (C'aS'a))) + 

(dp
i
a (df

i
a (C'a+S'a))(dp

i
b (C'bS'b))') + 

(dp
i
a (df

i
a (C'a+S'a))') + ((df

i
a  

((C'aS'a))) (dp
i
b (C'bS'b))'(dp

i
b (C'b+S'b))')}             (7) 

 
dp

 i-1
b = {(dp

i
b (df

i
b (C'aS'b))) +  

(dp
i
b (df

i
b (C'b+S'b))(dp

i
a (C'aS'a))') + 

(dp
i
b (df

i
b (C'b+S'b))') +  

((df
i
b ((C'bS'b)))(dp

i
a (C'aS'a))' 

(dp
i
a (C'a+S'a))')}                                                   (8) 

 
Viterbi decoder performance simulations: The high 
level coding and decoding simulation of the Viterbi 
decoder was performed by MATLAB and Simulink. 
The built in Viterbi decoder of Simulink was used to 
verify our algorithm that was coded in MATLAB. 
Simple  block  diagram  of  the  system  is shown in 
Fig. 12. In the encoder simulation, the input data is 

convolutional encoded according to the IEEE industry-
standard 802.11a generator polynomials, g0 = 1338 and 
g1 = 1718 of rate R = 1/2 and then modulated as BPSK. 
The channel model consists of an additive white 
Gaussian noise source to add noise to the modulated 
bits according to the SNR setup. The receiver 
demodulates the data to produce 4 bit quantized soft 
decision provided to the Viterbi decoder. A bit error 
rate comparator compares the decoded data with the 
source one to get the bit error rate. The interface panel 
for  the  MATLAB  simulation program is shown in 
Fig. 13  the  user  can  enter all parameters where this 
simulation environment can be modified to evaluate 
their effect on the Viterbi decoder performance. 

The first entry box lets the user enters the number 
of soft decision bits that quantizes the received data to 
2^ (soft-bits) levels. The second entry gives the choice 
of  truncation of the received bits, that is, determination
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Fig. 14: Simulink block diagram 

 
of  limits  of  the  quantizer,  to  be  at  the  constellation 
points  or  beyond  them.   Signal-to-Noise    ratio  
(SNR = Eb/No) is entered in dB as a parameter in the 
third    entry.    SNRdB  =  log (Eb/No),    from    this    
Eb = No*10^

(SNR
dB

)
 and for  BPSK  there  is  one  bit  

per  symbol  so  Eb = Es. The packet size can be varied 
in the fourth entry, where the last entry box for the 
generated sequences to be entered.  

The MATLAB code was written in two versions. 
One implements the carry-ripple Viterbi decoder and 
the other implements the pipelined carry-save were the 
Simulink simulate the Viterbi decoder in carry-ripple 
architecture. All architectures show exact simulation 
results for the same parameters.  

The blocks of the Simulink are shown in Fig. 14. 
The first block generates packets of random binary data 
of fixed length using Bernoulli model. These bits feed a 
pad block that appends zeros to each packet to flush the 
encoder that is, ending at state zero for each frame. A 
convolutional encoder encodes the packet according to 
the given sequence functions. Then these bits are 
modulated as BPSK. At the receiver a quantizer with 
given number of soft bits and truncation point quantize 
the data. Viterbi decoder decodes the quantized data. 
Then bit error rate calculations are done on the decoded 
data and the source data. 

Since the convolution code is standardized by the 
802.11 committee, its performance should be 
acceptable to that of multi-path channels. Our 
verification consisted of exact performance of the bit 
level pipelined implementation to that of standard 
implementation. This is sufficient for testing using one 
channel model. We expect the performance of our 
implementation to match the standard for any channel 
type. Since hardware level simulations take 
considerably larger times, we did not perform multi-
path simulations at hardware level.  
 
Coding gain vs. soft-decision bits: The number of 
soft-decision   bits   affects   the   gain  of  the code. The 

 
 

 

 

 
 
 
 
 
 
 
 
 
 

Fig. 15: BER vs. SNR for different soft-decision bits, for 
IEEE standard with code g0 = 1338 and g1 = 1718 of 
rate R = 1/2, with peak = 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16: BER vs. SNR for different soft-decision bits, for 

UMTS  standard with code g0 = 5578, g1 = 6638 and 

g2 = 7118 of rate R = 1/3, with peak = 2 

 

simulation results are shown in Fig. 15. We see from 

the  figure  an increase in gain between 3-bits and 4-

bits;  however  more  than  4-bits  gives  very  low 

increase  in  gain.  
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Fig. 17: Limits of the quantizer at the constellation points (+1, -1) 

 

 
 
Fig. 18: Limits of the quantizer at (+2, -2) where the constellation points at (+1, -1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 19: Quantizer limits (+2, -2) and (+1, -1) effect on the 

code gain 

 

Figure 16 shows the variation of the soft-decision 

bits on the error rate vs. signal -to- noise ratio of the 

UMTS convolutional encoding of generating sequences 

g0 = 5579, g1 = 6639, g2 = 7119 of R = 1/3 and constraint 

length = 9. It also shows good enhancement in BER for 

4-bits soft-decision over the 3-bits. Increasing soft-

decision bits more than 4-bits gives little gain as shown. 

 

Coding gain vs. peaks points (limits of the 

quantizer): The limiting of the incoming data affects 

mostly the BER. This value is determined by the peak 

value. Figure 17 shows the quantizer with limits at the 

constellation points +1, -1, where Fig. 18 shows the 

limits of the quantizer at +2, -2 points, with 

constellation   points   at   the  +1, -1.  For the two cases 

the range is divided into the same number of levels are 

kept.  

Figure 19 shows the effect of the quantizer limits 

on  the  3-bits and 4-bits soft-decision bits. From the 

Fig. 19 we notice an approximately 0.5 dB gain for 

peak = 2 over peak = 1.  

 

Viterbi decoder circuit implementation: The Viterbi 

decoder design was captured with Vierlog HDL and 

simulated by Verilogger and Modelsim programs and 

synthesized by ISE Xilinx on a Virtex_II FPGA 

platform. A high level model was written in MATALB 

and Simulink to carry out all the necessary simulation 

performance for different parameters. 

 

SYNTHESIS RESULTS 

 

After the Viterbi decoder is verified by Simulink, it 

was synthesized by Xilinx (2000) ISE 5.1i development 

tool to prototype on an FPGA chip. We synthesis the 

two versions of Verilog HDL code that of carry-ripple 

and carry-save techniques. Figure 20 shows timing 

report of the two techniques; it shows the speed 

improvement of the pipelined carry-save technique over 

the carry ripple one, by a factor of 4.09.  

Figure 21 shows the hardware complexity of the 

two versions before and after pipelining. Pipelining 

needs more hardware to accommodate the cut sets, 

redundancy suppression circuits and latency of the 

pipelining.  

Many designs of the Viterbi decoder are 

implemented without taking the pipelining technique 

into consideration, while Santhi et al. (2008) designed a 
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Fig. 20: Timing report of viterbi decoder verilog HDL code of the two versions before and after pipelining 

 

 
 

Fig. 11: Hardware complexity report of Viterbi decoder Verilog HDL code of the two versions before and after pipelining 

 
Viterbi decoder using pipelining and reached a 2.3 
times faster than the decoder without pipelining.  

 
CONCLUSION 

 
This study presents a comprehensive methodology 

for   the   design  of  a  high-speed  radix-2  64-state  
rate = 1/2 IEEE 802.11A/G Viterbi decoder, prototyped 
in an FPGA chip, where carry-save addition technique 
is used in developing the Viterbi decoder design. It was 
shown how efficiently this technique improves the 
speed of the Viterbi decoder approximately by a factor 
of 4, with more hardware complexity. In our high-level 
simulation we focus on the matching of the BER 
performance of this technique with ordinary carry-

ripple addition. We perform a soft-decision simulation, 
which shows a gain of 0.125 dB of 4-bit over 3-bit 
quantizer. And another simulation shows 0.25 dB gain 
if limits of the quantizer are beyond the constellation 
points. 
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