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Abstract: Tramcar will glides fast along inclined railway when it is out of control. Steel beam bumper can prevent 
its motion. This kind of bumper is widely used in inclined shaft of mine where tramcar is used as auxiliary transport. 
There exists intense impact between tramcar and steel beam bumper. The impact force is a key parameter for 
designing bumper. But this force is difficult to predict. Three models are established for obtaining accurately the 
impact force. In these models, tramcar with its buffer is simplified as a spring-mass system. Steel beam bumper is 
simplified as Euler-Bernoulli Beam, single-degree-of-freedom spring-mass system and a spring without mass 
respectively. Simulation shows that impact forces from these models are approximate, so these three models are 
equivalent. The maximal impact force almost increases linearly with the increasing of mass and impact speed of 
tramcar. The total impact time increases only with the increasing of mass, but it is not relevant to the impact speed. 
Single-degree-of-freedom spring-mass model is the simplest one, so it is easy and useful to simulate the impact 
between tramcar and steel beam bumper for actual engineering design. 
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INTRODUCTION 

 
In mine, Bumper is compelled to install for 

preventing high speed tramcar from gliding freely along 
inclined railway (He, 2008). During preventing, there 
exists intense impact between tramcar and bumper. 
Actual conditions show that impact force varies with 
time and its amplitude is very large. Bumper must have 
enough strength.  

There are two kinds of bumper, such as steel beam 
bumper and flexible bumper. Impact between tramcar 
and flexible bumper has been simulated (He, 2009). 
Steel beam bumper shown in Fig. 1 is widely used in 
China because its structure is simple.  

Impact force is a key parameter for designing steel 
beam bumper, but it is difficult to predict. As a 
traditional method, amplified gravity of tramcar is used 
as the impact force. This method is too simple to 
predict accurately the impact force.  

Impact between rigid body and structure has been 
widely researched (Edwards, 1999; Li et al., 2010). 
Finite Element Method (FEM) and Finite Difference 
Method (FDM) are used to simulate the impact (Kral, 
1993; Yu et al., 1996).  

The impact between tramcar and steel beam 
bumper was developed (He and Ren, 2003). And, the 
deformation of the bumper is neglected. But actual steel 
beam bumper can deform during impact. The present 
study develops three models to predict the impact force. 
In these models, the deformation of steel beam bumper 
is taken fully into account. 

 
 
Fig. 1: Tramcar and steel beam bumper 

 
SIMULATION MODEL 

 
Buffer is installed at the front of tramcar and its 

elastic deformation is very large during impact. Buffer 
can be equivalent to a spring without mass because its 
mass is much less than the one of tramcar. The 
deformation of tramcar can be neglected, so it is 
reasonable to simplify tramcar as a rigid body whose 
mass is m1. Tramcar with buffer can be regarded as 
spring-mass system.  

Steel beam bumper is simplified as three 
mechanical models in this study, namely Euler-
Bernoulli Beam, single-degree-of-freedom spring-mass 
system and spring without mass. 
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railway

steel beam 

bumper

buffer
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(a) 

 

 
 

(b) 

 
Fig. 2: Beam-spring-mass model (a) Impact between tramcar 

and steel beam bumper, (b) Differential element of 
steel beam bumper 

 
Three models, such as Beam-spring-mass model, 

2-degree-of-freedom spring-mass model and Single-
Degree-of-Freedom (SDOF) spring-mass model are 
used to describe the impact between tramcar and steel 
beam bumper.  

Actual conditions show that tramcar can be 
rebounded after first impact then impacts the bumper 
again. The maximal impact force relevant to bumper 
design exists in the first impact. So, this study simulates 
the first impact between tramcar and steel beam 
bumper. Rebound and second impact both are 
neglected. 
 
Beam-spring-mass model: The main deformation of 
steel beam bumper is bending when tramcar impacts it. 
The axis of steel beam bumper and the impact force are 
in same one plane. The rotation of steel beam bumper is 
much less and can be neglected. So, steel beam bumper 
can be regarded as Euler-Bernoulli Beam with equal 
cross section. Such simplification is reasonable 
(Thompson and Jones, 2000).  

According to above analysis, the corresponding 
mechanical model is shown in Fig. 2 (a). In this 
mechanical model, steel beam bumper is supported at 
points A and C. The touch position between tramcar 
and steel beam bumper is point B.  

The coordinate system is established firstly, x axis 
coincides with the axis of steel beam bumper. And, its 
positive direction is upward. Y axis coincides with the 
motion direction of tramcar. 

A differential element of steel beam bumper whose 
coordinate is (x, 0) is shown in Fig. 2b. And, its 
displacement is y (x, t) at time t. The dynamics equation 
satisfies: 
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where,  
ρ & A : The density and sectional area of steel beam 

bumper, respectively 
p (x) : Distribution force acting on steel beam 

bumper 
Q1 & Q2 : Shearing force acting on 2 lateral sides of the 

differential element 
 
Shearing force is continuous, so Q1 and Q2 satisfy: 
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Substituting Eq. (2) into (1), yields: 
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Moment acting on the differential element satisfies: 
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where, M1 and M2 are moments acting on 2 lateral sides 
of differential element. 

Moment is continuous, so M1 and M2 satisfy: 
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Substituting Eq. (5) into (4) yields: 
 

x

M
Q

∂

∂
= 1

1
                                                           (6) 

 
Substituting Eq. (6) into (3) yields: 
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For beam with equal cross section, the moment 

satisfies: 
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where, E and J are Young’s modulus and moment of 

inertia of steel beam bumper, respectively. 
Substituting Eq. (8) into (7) yields: 
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It is assumed that the main deformation of bumper 
satisfies (William and Marie, 2005): 
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where, ωn and φn are the n
th

 natural frequency and 
phase, respectively. n = 1, 2, 3…. 

Substituting Eq. (10) into (9) yields: 
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Solution of Eq. (11) satisfies: 
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where, C1, C2, C3, C4 are parameters, respectively.  
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Two ends of steel beam bumper are simple 

supported, so the displacement and moment at their 
ends are zero. The boundary conditions satisfy: 
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where, l is the total length of steel beam bumper. 

Substituting Eq. (13) into (12) yields: 
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It can be obtained from Eq. (14) that: 
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So, Y(x) satisfies: 
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Normalization is used to obtain parameter Cn: 
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The n
th

 modal of simple supported steel beam 

bumper satisfies: 
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The displacements of every point on the steel beam 

bumper satisfy: 

 

∑
∞

=

=
1

)()(),(
n

nn tqxYtxy              (19) 

 

where, qn (t) is the n
th

 normal coordinate corresponding 

to Yn (x). 

Substituting Eq. (19) into (9), yield: 
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It is known from the actual conditions that the 

impact force applied to steel beam bumper is 

concentrated force. But the right hand of Eq. (9) is 

distributed force, so it is necessary to transform the 
concentrated force to the distributed one, namely: 
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where ξ is the distance between the upward supported 

end and the impact point on steel beam bumper. 

Substituting Eq. (21) into (20), yields: 
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Two sides of Eq. (22) are multiplied by Ym (x), then 

integrated with respect x along the length of steel beam 
bumper, yields: 
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For Bernoulli-Euler beam, its modal satisfies 

(William and Marie, 2005): 
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where, δij is equal to 1 if i = j, otherwise δij is equal to 0. 
According to Eq. (24) and (25), Eq. (23) can be rewrite 
as: 
 

)()()()(

4

ξ
π

ρ nnn YtPtq
l

n

A

EJ
tq =




+&&
               (26) 

 
For obtaining qn(t), 2 inertial conditions are 

necessary. It is assumed that these conditions satisfy: 
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Equation (27) and (28) are multiplied by ρAYn (x) 

and integrated with respected x along the length of steel 
beam bumper, yields: 
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So, normal coordinate satisfies: 
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The displacement of the impact point on steel beam 

bumper satisfies: 
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Because tramcar with buffer is simplified as a 

spring-mass system, so its dynamics equation of 
satisfies: 
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where,  

m1 & y1 : Mass and the displacement of tramcar, 

respectively  

k1 : The stiffness coefficient of buffer  
 

The impact force between tramcar and steel beam 

bumper satisfies: 
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Fig. 3: Two-degree-of-freedom spring-mass model 
 

Two-degree-of-freedom spring-mass model: Mass 
and stiffness of steel beam bumper are continuous. 
According to the principles of equivalent mass and 
equivalent stiffness, steel beam bumper can be 
simplified as signal-degree-of-freedom spring-mass 
system. And, it is composed of a spring without mass 
and a rigid body whose mass is m. So, tramcar with its 
buffer and steel beam bumper can consist of 2-degree-
of-freedom spring-mass system. The corresponding 
mechanical model is shown in Fig. 3.  

According to above mechanical model, the 
corresponding dynamics equation satisfies: 
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where,  
m & k : The equivalent mass and stiffness of steel beam 
bumper, respectively  
y : The displacement of the impact point on steel beam 
bumper  
 

It is assumed that the displacement of point B 
under impact force is similar to the one under static 
loading P. So, the deflection between point A and point 
B satisfies (Mott, 2002): 
 








 −
−

−
−

=
3

2

2

322 )(

)(23

)(
)(

l

xl

l

x

l

l

EJl

lP
xyAB

ξβ
ξξ

ξξ (36) 

 
where, β is coefficient relevant to ξ. 

And, the deflection between point B and point C 
satisfies: 
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The equivalent mass of steel beam bumper satisfies: 
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where,  
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Fig. 4: Single-degree-of-freedom spring-mass model 
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The equivalent stiffness of steel beam bumper satisfies: 
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The force between the equivalent mass and the 

tramcar satisfies: 
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Single-degree-of-freedom spring-mass model: Mass 

of steel beam bumper is much less than the one of 

tramcar, so it is reasonable to neglect the equivalent 

mass of steel beam bumper in the 2-degree-of-freedom 

model. The equivalent spring of steel beam bumper and 

buffer can connect in series. A new Single-Degree-of-

Freedom (SDOF) spring-mass mechanical model is 

shown in Fig. 4.  

According to Newton’s second law, the 

corresponding dynamics equation satisfies: 

 

0
1211
=+ ykym &&                                                  (41) 

 

The stiffness of spring k2 satisfies: 
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Substituting Eq. (39) into (42), yields: 
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According to this model, the impact force satisfies: 
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SIMULATION AND ANALYSIS 
 

SIMULINK/MATLAB is used in the present study 

for  simulation.  The  modules  which  are connected by  

 
 

(a) 

 

 
 

(b) 

 
Fig. 5: Impact force from beam-spring-mass model (a) impact 

force when impact speed of tramcar is different, (b) 
impact force when mass of tramcar is different 

 
lines represent program codes in SIMULINK. And, 
data can flow between the modules through lines (Wan 
et al., 2009).  

According to actual conditions, Young’s modulus 
of steel beam bumper is 209 Gpa and its moment of 
inertia is 2.51×10

-6
 kg/m

2
, sectional area is 1.5×10

-3 
m

2
, 

mass density is 7.8×10
3 

kg/m
3
, total length is 2 m, the 

distance between impact point and upward end is 1.65 
m, the stiffness coefficient of buffer is 7.90×10

5 
N/m. 

 
Impact force from beam-spring-mass model: It is 
assumed that tramcar whose mass is 2300 kg impacts 
steel beam bumper with different impact speed, such as 
5, 10 and 15 m/s, respectively. For their first impact, it 
is known from Fig. 5a that impact force increases from 
zero and reaches peak at about 0.09s, then it decreases 
to zero. The peak of impact force increases with the 
increasing of impact speed. But the total impact time 
does not vary with impact speed.  

It is assumed that three different tramcars whose 
mass are 1000, 1800 and 2300 kg impact steel beam 
bumper with same impact speed 10 m/s. For their first 
impact, it is known from Fig. 5b that the impact force 
increases from zero and reaches peak at different time.   
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Fig. 6: Impact force from three models 

 

 
 
Fig. 7: Maximal impact force from three models 

corresponding to nine impact conditons 

 
Table 1: Impaction conditions 

Impaction condition Mass of tramcar (kg) Impact 
speed (m/s) 

1 1000 5 
2 1800 5 
3 2500 5 
4 1000 10 
5 1800 10 
6 2500 10 
7 1000 15 
8 1800 15 
9 2500 15 

 

And, the peak of impact force and total impact time 

increase with the increasing of mass of tramcar. 

 

Impact force from three models: It is assumed that 

tramcar whose mass and impact speed are 2500 kg and 

15 m/s, respectively. The impact forces from above 

three models are shown in Fig. 6. All these impact 

forces are approximate. So, these 3 models are 

equivalent. The SDOF spring-mass model is the 

simplest one, so it is easy to use this model to simulate 

the impact between tramcar and steel beam bumper. 

The maximal impact force that exists in the first 

impact is an important parameter for designing bumper.  

 
 
Fig. 8: Maximal impact force depends on mass and impact 

speed of tramcar 

 

For obtaining the characteristic of maximal impact 

force, it is assumed that there are three tramcars whose 

mass are 1000, 1800 and 2500 kg, respectively. All 

these tramcars impact steel beam bumper with three 

impact speeds, namely 5, 10 and 15 m/s. These masses 

and impact speeds comprise nine impact conditions 

shown in Table 1.  

It is known from Fig. 7 that the maximal impact 

force depends on mass and impact speed of tramcar. 

And, these forces from three models corresponding to 

nine impact conditions are approximate. So, these three 

models are equivalent. In Fig. 8, the maximal impact 

force almost increases linearly with the increasing of 

the mass and impact speed of tramcar. 
 

CONCLUSION 
 

According to actual conditions, three models are 
used to simulate the impact between tramcar and steel 
beam bumper. Simulation shows that these models are 
equivalent and the impact forces from these models are 
approximate. In these three models, the SDOF spring-
mass model is the simplest one. It is easy and helpful 
for actual engineering design.  

The maximal impact force is a key parameter for 
steel beam bumper design. And, it almost increases 
linearly with the increasing of mass and impact speed 
of tramcar. 
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