
Research Journal of Applied Sciences, Engineering and Technology 5(4): 1278-1283, 2013

DOI:10.19026/rjaset.5.4862

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: June 28, 2012 Accepted: August 08, 2012 Published: February 01, 2013

Corresponding Author: Hong Wang, Department of Mathematics, Central South University, China
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

1278

Research Article
A Feature-Weighted Instance-Based Learner for Deep Web Search Interface Identification

1
Hong Wang,

1
Qingsong Xu,

2
Youyang Chen and

2
Jinsong Lan

1
Department of Mathematics,

2
Department of Information Science and Engineering, Central South University, China

Abstract: Determining whether a site has a search interface is a crucial priority for further research of deep web
databases. This study first reviews the current approaches employed in search interface identification for deep web
databases. Then, a novel identification scheme using hybrid features and a feature-weighted instance-based learner
is put forward. Experiment results show that the proposed scheme is satisfactory in terms of classification accuracy
and our feature-weighted instance-based learner gives better results than classical algorithms such as C4.5, random
forest and KNN.

Keywords: Deep web mining, instance-based learning, search interface identification

INTRODUCTION

The deep web (also called the invisible web,

hidden web) (Bergman, 2001) refers to the web content
that is behind HTML forms and web services search
interfaces which are hidden from traditional web
crawlers. In most cases, the only way to surface the
deep web information is by formulating various queries
on such search interfaces. Applications such as deep
web sampling and deep web categorization are based on
the analysis of these interfaces. Since the majority of
search interfaces on the deep web are HTML forms, to
automatically integrate them and retrieve their contents,
the perquisite is to identify whether these forms are
searchable.

In this study, we address the above-mentioned
identification problem using a pre-query approach. We
first carefully examine form features and create a
hybrid feature set to characterize the HTML forms.
Instead of using tree classifiers in previous researches
(Cope et al., 2003; Barbosa and Freire, 2005; Ye et al.,
2009), we try a different instance-based one for search
forms classification. Based on the K* algorithm
proposed in Cleary and Trigg (1995), we put forward a
Feature-Weighted Instance-Based Learning (FWIBL)
algorithm. FWIBL achieves a satisfactory classification
accuracy and gains better results than the original K*
algorithm and classical classification algorithms such as
KNN, C4.5 and random forest on real datasets.

This study has the following contributions:

• We propose to model an HTML form using hybrid
features, namely features from structural form
controls and semantic textual contents within the

form involved. This combination of structural and
semantic features has proved to be successful.

• We propose a novel instance-based learning
algorithm for search for identification purpose. Our
approach is based on K* but we use a feature-
weighted blending parameter to compute the
sphere of influence (the effective number of
instances) in K*.

• We conducted tests of the improved algorithm with
classical classification algorithms such as KNN,
C4.5 and random forest on real data sets.
Experimental results have shown that the current
approach is more effective in differentiating search
forms from non-search forms in the deep web

LITRATURE REVIEW

Finding interfaces or entry points (mainly HTML
forms) to search online databases is crucial for further
information extraction and integration of the deep web.
If the scale of the deep web under investigation is
small, we could manually judge and collect the search
interfaces as was done in Palmieri Lage et al. (2004)
and Chang et al. (2004) though it might be a little
tedious. But this method will not work for the real deep
web, which is estimated to be 500 times larger than the
surface web (Bergman, 2001). Search interface
identification process has to be automatic. In a machine
learning environment, a binary classifier is needed to
differentiate searchable forms from non-searchable
ones.

Two major approaches are currently employed to

construct the binary classifier: pre-query and post-query

approaches. The former method uses a form classifier

to judge an HTML file according to the features within

Res. J. Appl. Sci. Eng. Technol.,

the form itself while the latter one identifies the form

search ability by means of submitting queries to the

web databases through HTML forms and decision is

made based on the returned result pages.
Cope et al. (2003) proposed a pre

that employs automatically generated features to
describe textual forms and uses the C4.5 decision tree
learning algorithm to classify them. This method was
further developed by Barbosa and Freire (2005, 2007)
but they used far less features than Cope
while achieved a higher precision.

Bergholz and Childlovskii (2003) gave an example
of the post-query approach. They constructed a form
analyzer using different heuristics such as the length of
the input field, the presence or absence of a password
protection to identify whether a form is queryable. They
then applied the query prober to manage the automatic
form filling and decided the usefulness of the form
according to results of probing.

Ye et al. (2009) extended the random forest
algorithm by applying a weighted feature selection
during the building of individual classifiers. They also
compared their algorithm with Bayes, C4.5, SVM and
traditional random forest approaches.

Shestakov (2009) suggested to divide all forms into
2 groups (u-forms and s-forms) based on the number of
visible form controls and demonstrated that such
separation improves the system accuracy. They
implemented 2 binary classifiers: the first is for forms
with one or 2 visible fields of select or text types (u
forms) and the second is for the forms with more than 2
visible fields (s-forms). Both classifiers determine
whether a form is searchable or non-
on a decision tree algorithm.

The above-mentioned previous approache
demonstrated the power of tree classification
algorithms. In this study, we want to transfer to
instance-based learning and give it an opportunity to
test its strength in deep web search interface
identification.

Before discussing how to classify a
we have to extract the features within the form. Thus,
we will discuss form feature extraction

Fig. 2: Arxiv search interface-HTML source code

Res. J. Appl. Sci. Eng. Technol., 5(4): 1278-1283, 2013

1279

form itself while the latter one identifies the form

search ability by means of submitting queries to the

web databases through HTML forms and decision is

made based on the returned result pages.
. (2003) proposed a pre-query approach

that employs automatically generated features to
describe textual forms and uses the C4.5 decision tree
learning algorithm to classify them. This method was
further developed by Barbosa and Freire (2005, 2007)

y used far less features than Cope et al. (2003)

Bergholz and Childlovskii (2003) gave an example
query approach. They constructed a form

analyzer using different heuristics such as the length of
ld, the presence or absence of a password

protection to identify whether a form is queryable. They
then applied the query prober to manage the automatic
form filling and decided the usefulness of the form

extended the random forest
algorithm by applying a weighted feature selection
during the building of individual classifiers. They also
compared their algorithm with Bayes, C4.5, SVM and

vide all forms into
forms) based on the number of

visible form controls and demonstrated that such
separation improves the system accuracy. They
implemented 2 binary classifiers: the first is for forms

f select or text types (u-
forms) and the second is for the forms with more than 2

forms). Both classifiers determine
-searchable using

mentioned previous approaches have
demonstrated the power of tree classification
algorithms. In this study, we want to transfer to

based learning and give it an opportunity to
test its strength in deep web search interface

Before discussing how to classify an HTML form,
we have to extract the features within the form. Thus,

extraction first.

Fig. 1: Arxiv search interface-a simple search form

Different from previous papers focusing on structural

features only, we take a hybrid approach which exploits

both structural and semantic information within the

form.

METHODOLOGY

Feature extraction: The search interface identification

problem can be stated formally in the following way:

given a set of all web pages WA, find

satisfies that WS contains searchable interfaces. As

stated in Cope et al. (2003), HTML forms constitute of

a large majority of search interfaces on the deep b, thus

we only discuss HTML form-

following.

To differentiate WS from W

forms) automatically using a machine learning

approach, we should first train the classifier with

sample datasets which gives a good characterization of

the real word HTML forms.

According to Raggett et al. (1997), an HTML is a

section of an HTML document which begins with a

<form> tag and ends with a </form

HTML form containing normal content, markup,

controls (such as checkboxes, radio buttons and menus)

and labels on those controls. Users generally issue a

search query by modifying the controls (entering text,

click checkboxes and/or selecting menu items) in the

form and then submit the query to an agent for further

processing. There are numerous search forms on the

web and a typical search form on www.arxiv.org and its

HTML source code are shown in Fig. 1 and 2,

respectively.

As shown in Fig. 2, the arxiv search form contains

a pair of FORM tags, 2 INPUT elements (one type is

“text” and the other is “submit”)

HTML source code

a simple search form

Different from previous papers focusing on structural

only, we take a hybrid approach which exploits

both structural and semantic information within the

METHODOLOGY

The search interface identification

problem can be stated formally in the following way:

, find
AS WW ⊂ which

contains searchable interfaces. As

. (2003), HTML forms constitute of

a large majority of search interfaces on the deep b, thus

-based WS in the

from WA-WS (non-search

forms) automatically using a machine learning

approach, we should first train the classifier with

sample datasets which gives a good characterization of

. (1997), an HTML is a

section of an HTML document which begins with a

</form> tag. A search

HTML form containing normal content, markup,

controls (such as checkboxes, radio buttons and menus)

rols. Users generally issue a

search query by modifying the controls (entering text,

click checkboxes and/or selecting menu items) in the

form and then submit the query to an agent for further

numerous search forms on the

pical search form on www.arxiv.org and its

HTML source code are shown in Fig. 1 and 2,

As shown in Fig. 2, the arxiv search form contains

elements (one type is

 and one SELECT

Res. J. Appl. Sci. Eng. Technol.,

Fig. 3: Arxiv login interface-a non-search form

element. FORM attributes such as “method” and
“action” is considered in that they are very important
features (Ye et al., 2009).

As is shown in Cope et al. (2003), features such as
numbers of “text” INPUT elements and SELECT
elements are also good indicators of the form search
ability. These features are extracted from the form
element or control structures and will be ca
“structural features” in our approach. One may notice
that the word ”SEARCH” occurs five times within the
form body and such semantically ”positive” words help
a human judge in determining the form search ability.
Generally, LABEL name, FORM action UR
textual contents within the form are of much semantical
importance and they become “semantical features” in
our extracted feature set. The arxiv search form also
contains a DIV tag, which is more frequently used
outside a form for style purpose and will be ignored.

A non-search form differ from a search from either
structurally or semantically or both. Take an example
again from the Arxiv.org. Its login interface is a non
search form (Fig. 3). From its HTML source code
(Fig. 4), we can see that the “password” INPUT
element makes Fig. 4 different

Fig. 4: Arxiv login interface-HTML source code

Res. J. Appl. Sci. Eng. Technol., 5(4): 1278-1283, 2013

1280

search form

element. FORM attributes such as “method” and
“action” is considered in that they are very important

. (2003), features such as
numbers of “text” INPUT elements and SELECT
elements are also good indicators of the form search
ability. These features are extracted from the form
element or control structures and will be called
“structural features” in our approach. One may notice
that the word ”SEARCH” occurs five times within the
form body and such semantically ”positive” words help
a human judge in determining the form search ability.
Generally, LABEL name, FORM action URL and
textual contents within the form are of much semantical
importance and they become “semantical features” in
our extracted feature set. The arxiv search form also
contains a DIV tag, which is more frequently used

ill be ignored.
search form differ from a search from either

structurally or semantically or both. Take an example
again from the Arxiv.org. Its login interface is a non-

(Fig. 3). From its HTML source code
password” INPUT

different from Fig. 2

structurally and the ”negative” words such as “login”,
“password” makes these 2 forms different semantically.

Due to the above considerations, we will model an

HTML form using structural features such as number of

the labels, absence or presence of a password INPUT

element within a form. Moreover, we put a special

emphasis on semantic features which are extracted from

label or control names, FORM action URL and all the

other textual contents within the form.

An improved instance-based learner:

(memory-based or case-based) learning algorithms

classify a new test instance by comparing it with

instances previously seen in the training process, which

have been stored in memory or databases (Aha

1991). Its underlying assumption is that similar

instances should be in similar classes. And the core of

such learning algorithms is how to define the similarity

between 2 instances and how to make a prediction

based on such similarities.

K*(KStar) algorithm proposed in Cleary and Trigg

(1995) is a typical example of instance

For the i-th feature, its transformation probability from

instance a to instance b can be expressed as

And the transformation probability from instance

instance b p (b|a) is calculated using the following

formula:

1

(|) ()(|),
m

i

p b a p i b a
=

=∏

where, m is the number of features in the instances.

In computing p (i) (b|a), the K* algorithm assumed

that all features are of equal importance and used an

identical blend parameter to control the "sphere of

HTML source code

structurally and the ”negative” words such as “login”,
“password” makes these 2 forms different semantically.

Due to the above considerations, we will model an

features such as number of

the labels, absence or presence of a password INPUT

element within a form. Moreover, we put a special

emphasis on semantic features which are extracted from

label or control names, FORM action URL and all the

ts within the form.

based learner: Instance based

based) learning algorithms

classify a new test instance by comparing it with

instances previously seen in the training process, which

r databases (Aha et al.,

1991). Its underlying assumption is that similar

instances should be in similar classes. And the core of

such learning algorithms is how to define the similarity

between 2 instances and how to make a prediction

K*(KStar) algorithm proposed in Cleary and Trigg

(1995) is a typical example of instance-based learning.

th feature, its transformation probability from

can be expressed as p (i) (b|a).

the transformation probability from instance a into

is calculated using the following

 (1)

is the number of features in the instances.

, the K* algorithm assumed

features are of equal importance and used an

parameter to control the "sphere of

Res. J. Appl. Sci. Eng. Technol., 5(4): 1278-1283, 2013

1281

influence" for all features. However, in real
classifications, different features actually play different
roles and thus cannot be treated equally.

In this study, we consider the differences of
features' importance in computing transformation
probabilities between instances and thus improve the
original K* algorithm by introducing a feature-
weighted blend parameter.

In our approach, the importance of features is
measured by the information gain statistic. The

information gain of a given attribute
i
x with respect to

the class attribute C is the reduction in uncertainty

about the value of C when we know the value of
i
x and

is computed using the following formula:

(;) () (|),
i i i
I I C x H C H C x= = − (2)

where, H(C) denotes the entropy of C and (|)
i

H C x

denotes conditional entropy of the value of Y if the

value of
ix is known.

The feature-weighted blend parameter B (i) for the
i-th feature is obtained by normalizing its information

gain value
i
I according to following formula:

, ;

() () / (), ;

0, .

i min

max i max min min i max

i max

MAX I I

B i MAX I I I I I I I

I I

=

= × − − < <
 =

 (3)

where, ,max minI I are the maximum and minimum values

among information gain values of all features
respectively, and the upper limit MAX(0≤MAX≤100)
of the normalization is the original blend parameter in
the K* algorithm. With this normalization, small values
are assigned to important features and large values to
unimportant ones.

Our purposed feature-weighted instance-based
learning algorithm is as follows:

Algorithm 1: A Feature-Weighted Instance-Based
(FWIB) Learning Algorithm:

1. Let T be the training set, instance (,)v x c T∈
and

the number of instances is N
2. for each test instance u = (x', c') do
3. for each feature i in the feature set
4. calculate p(i)(u|v) from v to u using B[i]

obtained in (3)
5. end for
6. Compute the transformation probability p(u|v)

according to (1)
7. Calculate class probability

1

arg max (|) ()
N

i
t k

c p b a I t c
=

′ = =∑ , where I is an

indicator function
8. end for

EXPERIMENTAL RESULTS

To measure the effectiveness of our feature-

weighted instance-based learning approach, we
performed experiments on 2 datasets. The datasets used
in this study were taken from real world web pages that
contain HTML forms. One was created by collecting
sites contained in the largest web directory
www.DOMZ.org. The other was extracted from sites
collected by Yahoo Chinese web Directory
(site.yahoo.com.cn). The HTML forms in both datasets
were crawled during April 2011 and June 2011 using
our web crawlers written in Python. The former data set
mainly contains 897 English HTML forms while the
latter mainly contains 526 Chinese ones. The data
distribution for each set varies, ranging from general
sites, academic sites, recreation sites to social sites and
science sites. It is by far the largest bilingual data set
used in similar research. Information of the 2 datasets is
detailed in Table 1.

We evaluated our algorithm with 3 different feature
evaluators, namely, information gain evaluator
(default), x

2
 static evaluator and gain ratio evaluator to

calculate feature importance values. In addition, we
tested a random method: generate B(i) for all features
from [0, MAX] randomly. One may notice that if let
B (i) = MAX for all features, our algorithm is reduced to
the original K* algorithm and we also tested our
algorithm in this case. Results for DMOZ Dataset and
Yahoo Dataset are shown in Fig. 5 and 6, respectively.

From Fig. 5 and 6, we can see that generally,
FWIBL with information gain evaluator gains the
highest classification precision and performs

Table 1: Two datasets used in the experiment

Search forms

 Non-search
forms

 Number of
features

DMOZ 451 446 18
Yahoo 246 280 18

Fig. 5: DMOZ dataset-FWIBL with 4 feature evaluators

Res. J. Appl. Sci. Eng. Technol., 5(4): 1278-1283, 2013

1282

Fig. 6: Yahoo data set-FWIBL with 4 feature evaluators

Table 2: Classification accuracy for DMOZ and yahoo datasets

 DMOZ dataset Yahoo dataset

C4.5 90.4124 85.5513

Random forest 89.2976 83.0798

IBK 88.9632 82.8897

K*(b = 20) 90.6354 84.6007

K*(b = best) 90.8584 86.3117

FWIBL (MAX = 60) 91.1928 86.6920

FWIBL (MAX = best) 91.5273 87.0722

well across a wide range of MAX values. FWIBL with

the other 2 evaluators also perform better than the

random chosen method and the K* algorithm. This can

be attributed to the fact that different HTML form

features carry different weights in the classifying a

search form from a non-search form.

Besides, to compare FWIBL with other popular

machining learning algorithms, we also experimented

with C4.5, Random Forest and IBK(KNN) models

using their default settings with 10-fold cross-validation

in the machining learning tool kit Weka (Hall et al.,

2009). The fractions of correct classification of various

algorithms are presented in Table 2. The best result(s)

for both datasets are highlighted in bold face. Results

were also obtained for K* and FWIBL which uses a

default blending value and which gave best accuracy.

As can be seen from Table 2, compared with C4.5,

Random Forest, KNN,K*, FWIBL gave the best results

for both of the two datasets.

In our experiments, we also find all algorithms

perform better using DMOZ Dataset than Yahoo

Dataset, though both datasets use the same feature set.

The reason why this happens is still unclear. Perhaps it

lies in the stylistic difference in HTML compiling

habits between English and Chinese users or the

linguistic difference in the 2 extracted semantic-related

features between the 2 languages.

CONCLUSION AND FUTURE WORK

In this study, we propose to model the HTML form

using a hybrid of structural and semantic features. Our

results have shown that this combination of structural

and semantical features is successful. In order to

classify search forms from non-search ones in the deep

web, we put forward the FWIBL learning algorithm.

We conducted tests of the FWIBL algorithm on DMOZ

and Yahoo Datasets and also compared its performance

with popular classification algorithms such as KNN,

C4.5 and random forest on the same datasets.

Experimental results have shown that the current

approach is more effective in finding the HTML search

forms in the deep web.

Our experiments have also revealed that HTML

search forms may have language-specific features,

which may lies in users' habits in compiling HTML

files or the semantic differences between the languages

involved. Many other features in HTML files, such as

URL, textual contents outside the HTML form, the

header information of the web page may also help in

the classification process. However, how to extract and

exploit such features needs further investigation. In the

future, we will try to do more experiments to figure out

the differences in search forms in English and Chinese

deep webs and focus on how to exploit features outside

the HTML form but still with the same

HTML file.

ACKNOWLEDGMENT

This study was supported in part by the National

Natural Science Foundation of China (No. 90820302 &

No. 10771217).

REFERENCES

Aha, D., D. Kibler and M. Albert, 1991. Instance-based

learning algorithms. Mach. Learn., 6(1): 37-66.

Barbosa, L. and J. Freire, 2005. Searching for hidden-

web databases. Proceedings of 8th International

Workshop on the Web and Databases (WebDB

2005), Baltimore, Maryland, 5: 1-6.

Barbosa, L. and J. Freire, 2007. Combining classifiers

to identify online databases. Proceedings of the

16th International Conference on World Wide

Web, pp: 431-440.

Bergholz, A. and B. Childlovskii, 2003. Crawling for

domain-specific hidden web resources. WISE

Proceedings of the Fourth International Conference

on Web Information Systems Engineering, pp:

125-133.

Bergman, M., 2001. The deep web: Surfacing hidden

value. J. Elec. Publish., 7(1): 01-07.

Res. J. Appl. Sci. Eng. Technol., 5(4): 1278-1283, 2013

1283

Chang, K., B. He, C. Li, M. Patel and Z. Zhang, 2004.

Structured databases on the web: Observations

and implications. ACM SIGMOD Record, 33(3):

61-70.

Cleary, J. and L. Trigg, 1995. K*: An instance-based
learner using an entropic distance measure.
Proceedings of the 12th International Conference
on Machine Learning, pp: 108.

Cope, J. and N. Craswell and D. Hawking, 2003.
Automated discovery of search interfaces on the
web. Proceedings of the 14th Australasian
Database Conference, 17: 181-189.

Hall, M., E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann and I. Witten, 2009. The weka data
mining software: An update. ACM SIGKDD Exp.
Newsletter, 11(1): 10-18.

Palmieri Lage, J., A. da Silva, P. Golgher and
A. Laender, 2004. Automatic generation of agents
for collecting hidden web pages for data extraction.
Data Knowl. Eng., 49(2): 177-196.

Raggett, D., A. Le Hors and I. Jacobs, 1997. Html 4.0

specification. World Wide Web Consortium

Technical Report, REC-html40.

Shestakov, D., 2009. On building a search interface

discovery system. Proceedings of the 2nd

International Conference on Resource Discovery,

pp: 81-93.

Ye, Y., H. Li, X. Deng and J. Huang, 2009. Feature

weighting random forest for detection of hidden

web search interfaces. Comput. Linguist. Chinese

Lang. Proc., 13(4): 387-404.

