
Research Journal of Applied Sciences, Engineering and Technology 5(4): 1183-1186, 2013

DOI:10.19026/rjaset.5.4834

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: June 20, 2012 Accepted: August 08, 2012 Published: February 01, 2013

Corresponding Author: S. Srinivasan, Department of Computing, SASTRA University, Kumbakonam, Tamilnadu, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

1183

Research Article
Adaptive File Comparison Technique for Secured Data Transmission Environment

1
S. Srinivasan and

2
C. Chandrasekar

1
Department of Computing, SASTRA University, Kumbakonam, Tamilnadu, India

2
Periyar University, Selam, Tamilnadu, India

Abstract: Huge amount of data are stored in the network security environment and quantities of data in these fields

tend to increase year on year. For this reason efficient File matching algorithms should be used which minimizes

computer storage which results in minimum response time on searching process. There are many problems involved

in file content matching technique. This technique works for finding the file content similarity. In this study, we

propose the new algorithm called Adaptive File Comparison Technique, which converts the source and destination

file contents into tokens and finally it makes a matrix format data called sparse matrix. The comparison technique

compares the sparse matrices of source and destination files to find the content similarity and dissimilarity which

leads to an efficient content matching technique rather than comparing the entire file content.

Keywords: Adaptive file comparison technique, databases, file matching, sparse matrix

INTRODUCTION

Computer network has been widely used and

played important roles in people’s life. Along with its
popularity is the serious network security problem.
With each passing day there is more critical data
accessible in some form over the network.

Keyword matching is one of the most efficient
network security techniques. It compares the network
packets or flow with the defined keywords utilizing
string matching algorithm. The keyword is a string
indicating network intrusion, attack, virus, Spam or
dirty network information. Keyword matching is wildly
used in Network Intrusion Management System
(NIMS), anti-virus, anti-spam, network content filtering
and so forth.

String matching is one of the most important areas
that have been studied in computer science. The general
string matching algorithm is well studied. Since 1977,
with the publication of the Boyer-Moore (BM)
algorithm and Knuth-Morris-Pratt (KMP) algorithm,
there have been several hundred studies published that
deal with exact string matching.

While be applied to network security, string
matching algorithm’s speed is an enormous pressure as
in other application areas. And the keywords are
known, so they could be pre-processed before
searching. There are also some specific characteristics
in network security application. First, the keywords pre-
processing only be done while the network security
equipment or software start up or the keywords update.
So the pre-processing time could be neglect when
designed or selected the string matching algorithm.

Second, we concentrate on the practical performance of
the algorithms not the theoretical bounds. Third, the
anti-attack capacity must be concerned to protect
network security equipment itself. In the content
matching technology, the main drawback is that the
entire file content is considered for the evaluation and it
may takes too much of time to find a tiny change in the
file, this is a serious issue which could be solved
through the proposed Adaptive File Comparison
Technique. It compares the file content by creating
sparse matrices from the content and this approach
provides similarity and dissimilarity details can be
obtained effectively.

LITERATURE REVIEW

String matching deals with a string
ntttT ...21=

(the text) of size n and searches it for all occurrences of
another, shorter string (Boyer and Moore, 1977; Knuth
et al., 1977)

mpppP ...21= (the pattern) of size m

(usually n>m). Both strings build over a finite set of

character called an alphabet denoted byΣ .
String-matching algorithms scan the T with the

help of the sliding window mechanism. The size of the
window is gene rally equal to m. To a j (1< = j< = n),
the window is positioned on tjtj+1…tj+m-1. The position j
is called a check point. At each check point, the
characters of the window are compared with the
characters of the pattern (Chakkrit, 2007). After a
whole match of the pattern or after a mismatch, the
window is shifted along the T according to the
heuristics of each algorithm.

Res. J. Appl. Sci. Eng. Technol.,

Fig. 1: Existing Algorithm for FileComparison

• Boyer-Moore (BM) Algorithm

• Boyer-Moore-Horspool (BMH) Algorithm

• Reverse Factor (RF) Algorithm

• Karp-Rabin (KR) Algorithm

• Knuth-Morris-Pratt (KMP) Algorithm

These are the string matching algorithms

(Horspool, 1980) and the same concept to be extended

with the little modification to file matching algorithm.

The Traditional algorithm which is to be followed

to perform file comparison process is stated in Fig. 1.

Normally File matching algorithm each byte or

character or block of data is converted in to an matrix

representation (Lecroq, 1992; Nimisha and

2012). The data is analysised by individual string

character (Sunday, 1990) is compared with one

another.

METHODOLOGY

In order to overcome the identified limitations in the

existing work and to improve the performance of

proposed application, this study introduces the

following techniques. They are:

Existing algorithm:

FileComparison ((File1Content, File2Content)

Input : FileContents

Output: FileComparisonResult

begin:

 File1data = ””; File2data = ””;

 File1data = FormatContent (File1Content);

 File2data = FormatContent (File2Content);

 if (Compare (File1data, File2data))

 {

 //data content are exactly same

 FileComparisonResult = ”True”;

 }

 else

 {

 //data content are different

 FileComparisonResult = ”False”;

 }

 return FileComparisonResult;

 end if;

end begin;

Res. J. Appl. Sci. Eng. Technol., 5(4): 1183-1186, 2013

1184

Fig. 1: Existing Algorithm for FileComparison

Horspool (BMH) Algorithm

Pratt (KMP) Algorithm

These are the string matching algorithms

and the same concept to be extended

with the little modification to file matching algorithm.

The Traditional algorithm which is to be followed

to perform file comparison process is stated in Fig. 1.

Normally File matching algorithm each byte or

or block of data is converted in to an matrix

Nimisha and Deepak,

. The data is analysised by individual string

is compared with one

In order to overcome the identified limitations in the

improve the performance of the

proposed application, this study introduces the

Fig. 2: Source matrix

Fig. 3: Destination matrix

Fig. 4: Adaptive file comparison technique

• Token Computation

• Adaptive file comparison technique

Token computation: In order to achieve assurance of

data storage verification, our scheme entirely relies on

the pre-computed token verification. Before comparing

the content, each file is computed with the user pre

computation technique to generate certain number of

short verification tokens. Each token covering a certain

row in the file is converted into matrix by using the

allocated tokens.

Need token computation: Input file and output file is

converted into square matrix of size nXn. In this square

matrix, token is allocated for each and every row;

allocated token must be a unique identifier which helps

to perform the comparison technique effectively.

Adaptive File Comparison Technique (AFCT):

proposed a new algorithm named “Adaptive File

Comparison Technique”. Here original file is available

in the database in the network environment. The new

file is compared with old file with this algorithm.

((File1Content, File2Content)

””;

(File1Content);

(File2Content);

File2data))

//data content are exactly same

”True”;

”False”;

file comparison technique

Adaptive file comparison technique

In order to achieve assurance of

data storage verification, our scheme entirely relies on

computed token verification. Before comparing

the content, each file is computed with the user pre-

computation technique to generate certain number of

erification tokens. Each token covering a certain

row in the file is converted into matrix by using the

Input file and output file is

converted into square matrix of size nXn. In this square

cated for each and every row;

allocated token must be a unique identifier which helps

to perform the comparison technique effectively.

Adaptive File Comparison Technique (AFCT): We

proposed a new algorithm named “Adaptive File

original file is available

in the database in the network environment. The new

file is compared with old file with this algorithm.

Res. J. Appl. Sci. Eng. Technol., 5(4): 1183-1186, 2013

1185

Each file is converted in matrix; the matrix is once

again converted in to sparse matrix format. Here source

file which is stated in the following Fig. 2 is the original

file and compared with destination file which is stated

in the following Fig. 3. In this below example the

source file row 0, column 1 and the element 11 has

changed in destination file element has 7.

For example the Source and Destination file data is

represented in the matrix format and is stated in the

following Fig. 2 and 3.

In this example the original matrix is converted in

to Sparse Matrix. The Sparse matrix format is

represented in the Fig. 4. In that first row element is 5

58, the first 5 indicates row size of the matrix, next 5

Fig. 5: Algorithm for adaptive file comparison technique

Proposed algorithm:

AdaptiveFileComparisonTechnique (File1Pathinfo, File2Pathinfo)

Input : FilePathinfo, NoiseValueInfo

Output : FileComparisonResult

Begin :

DefaultInfo = ”InvalidDataFormat”; File1Data = ””, File2Data = ””;

DataSimillarityCount = 0; DataNonSimillarityCount = 0;

Simillaritypercent = 0.0; NonSimillaritypercent = 0.0;

 File1 = FileNameExtraction (File1Pathinfo);

 File2 = FileNameExtraction (File2Pathinfo);

 if (File1.ISContentEmpty || File1.ISNull && File2.ISContentEmpty || File2.ISNull)

 {

 FileComparisonResult = DatafaultInfo;

 Print FileComparisonResult;

 }

 else

 {

 File1Data = LoadNONNOISEVALUES (File1); File1Data =

ConvertTOSPARSEMATRIXFORMAT (File1Data);

 File2Data = LoadNONNOISEVALUES (File2);

 File2Data = ConvertTOSPARSEMATRIXFORMAT (File2Data);

for (i = 0, j = 0; i<File1Data.Size(), j<File2Data.Size(); i++, j++)

{

 If (File1Data (i).EQUALS (File2Data (j)))

{

DataSimillarityCount++;

}

else

{

DataNonSimillarityCount++;

}

 }

Simillaritypercent = CALCULATEPERCENTSIM (DataSimillarityCount,

DataNonSimillarityCount);

NonSimillaritypercent = CALCULATEPERCENTNONSIM (DataSimillarityCount,

DataNonSimillarityCount);

Print (“Simillarity percentage = “Simillaritypercent);

Print (“NonSimillarity percentage = “ NonSimillaritypercent);

}

end begin;

Res. J. Appl. Sci. Eng. Technol., 5(4): 1183-1186, 2013

1186

indicates the column size of the matrix and the 8

indicates the total number of Non-zero elements in the

matrix. Other values in the row indicate the concern

row value, column value and value of Non-zero

elements.

Through the proposed algorithm we can easily

identify that the data is updated or not by the content of

the first line. If the first line in both the source and

destination file sparse matrix are same then there may

not be any updates in the file but we need to check the

entire content in both the source and destination sparse

matrices but if we identified any change in the first line

then it denotes that there is a update in the file content.

The proposed algorithm is stated in the following

Fig. 5 which produces and efficient output on the

comparison technique. If needed for further verification

we have to compare the entire element in the matrix.

The final result will be generated after the completion

of the entire process.

PERFORMANCE ANALYSIS

The proposed Adaptive File Comparison

Technique is implemented and studied thoroughly and

the performance of this proposed system is analyzed

with the existing traditional file content comparison

technique in terms of execution, processing time and

level of accuracy. From the results, our proposed work

performs well as compared with the existing approach.

Result is stated that the proposed technique performs

better than the existing algorithm in terms of its

execution time.

EXPERIMENTAL RESULTS

We analyze the performance of our proposed

approach by the limitation of Execution time.

From the Fig. 6 and 7, it is observed that the

proposed work finds best results with minimum

response time as compared with that of existing work.

Through the results, we also revealed that our

proposed system achieves best performance for both the

low and high volume of file content.

CONCLUSION

In this study, we presented a new algorithm

Adaptive File Comparison Technique as a fast file

comparison algorithm. Using our new proposed

algorithm leaded to two main advantages compared to

other compared algorithms. Experimental result show

that our proposed algorithm the search with less number

of comparisons and faster elapsed searching time

between the file. Therefore our proposed algorithm is

Fig. 6: Evolution of adaptive file comparison technique

Fig. 7: Execution time based report with various file sizes

suitable for searching any kind of database as well as in
any other files with the extension of text and java file
searching applications.

RECOMMENDATIONS

This study is applicable only for text and java files,

it can be expanded by using word document, XL sheets,
PDF, image, etc.

REFERENCES

Boyer, R. and J. Moore, 1977. A fast string searching

algorithm. Commun. ACM, 20(10): 762-772.

Chakkrit, S., 2007. A comparison and analysis of name

matching algorithms. Int. J. Appl. Sci. Eng.

Technol., 45: 252-257.

Horspool, R.N., 1980. Practical fast searching in

strings. Software Prac. Exp., 10(6): 501-506.

Knuth, D., J. Morris and V. Pratt, 1977. Fast pattern

matching in strings. SIAM J. Comput., 6(2):

323-350

Lecroq, T., 1992, A variation on the Boyer-Moore

algorithm. Theoret. Comp. Sci., 92(1): 119-144.

Nimisha, S. and G. Deepak, 2012. String matching

algorithms and their applicability in various

applications. Int. J. Soft Comp. Eng., 1(6).

Sunday, D.M., 1990. A very fast substring search

algorithm. Commun. ACM, 33(8): 132-142.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

0 1 53 97 1311

File size in KB

E
x
e
c
u
ti
o
n
 t
im

e
 (
m
s)

Existing technique

Proposed adaptive file
comparison technique

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

0 1 3 6 12

File size in KB

E
x
ec
u
ti
o
n
 t
im

e
 (
m
s)

Existing technique

Proposed adaptive file
comparison technique

