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Research Article 
Stabilization and Control of a Spherical Robot on an Inclined Plane 

 

Tao Yu, Hanxu Sun, Qingxuan Jia, Yanheng Zhang and Wei Zhao 
Department of Automation, Beijing University of Posts and  

Telecommunications, Beijing, 100876, China 
 

Abstract: In this study, the dynamics and control aspects of a spherical robot rolling without slipping on an inclined 
plane are investigated. The planar dynamic model of the robot rolling ahead on an inclined plane is derived using 
Lagrangian dynamics. Based on the equivalent control method and Lyapunov stability theorem, a decoupled sliding 
mode control approach is presented for stable control of the planar motion. Utilizing the constrained Lagrange 
method the three-dimensional dynamics of the robot rolling on an inclined plane are deduced. Based on input-output 
feedback linearization, we develop a trajectory tracking control algorithm for the three-dimensional motion of the 
robot. The validity of the proposed controllers is demonstrated through numerical simulations. 
 
Keywords: Inclined plane, nonholonomic constraint, sliding mode control, spherical robot, trajectory tracking 

 
INTRODUCTION 

 
Among diverse types of mobile robots, spherical 

robots have become increasingly attractive over the past 
fifteen years. Spherical robots utilize the locomotion 
principle by shifting the position of their center of mass 
to generate the driving torque for cruising and they are 
believed to have several benefits in certain applications. 
Firstly, they have only a single point of contact with the 
ground, which allows locomotion with minimal 
frictions and leads to low energy locomotion for the 
robotic systems. Secondly, the spherical structure of the 
robotic systems makes it possible for the spherical 
robots to move even in tightly constrained spaces. 
Thirdly, the spherical exoskeleton protects the inner 
driving mechanism and sensory equipment from 
external shocks and dusts. Moreover, spherical robots 
are easily made liquid and gas proof. Fourthly, there is 
no chance for a robotic ball to lose mobility by falling 
over. This is very critical for other types of mobile 
robots, such as humanoid robots and rover robots. 

Spherical robots will inevitably encounter such 
situations as climbing slopes and traversing obstacles in 
a wide range of their engineering applications. The 
climbing ability has become one of the important 
indicators for measuring the motion performance of a 
spherical robot. Halme et al. (1996) analyzed the 
climbing ability and obstacle surmounting capability of 
a spherical robot. But they didn’t derive the dynamic 
equations of the climbing motion and stable control of 
the climbing motion of the spherical robot couldn’t be 
realized as a result. Abbott (2000) derived the planar 
dynamic model of a two-wheel vehicle, of which the 

locomotion principle is similar to that of a spherical 
robot, driving ahead on an incline using Lagrangian 
dynamics and proposed a nonlinear feedback control 
scheme to regulate the traveling velocity of the vehicle. 
Although the vehicle could be controlled to maintain a 
desired velocity, precise location of the vehicle couldn’t 
be achieved with this velocity regulator. Yue and Deng 
(2009) deduced a linear state space model for the 
climbing motion of a spherical robot and presented a 
LQR controller to regulate the rolling velocity of the 
robot. As the control development was based on the 
linear dynamical system obtained by linear zing the 
nonlinear dynamics governing the climbing motion 
around a non-equilibrium point, this linear controller 
possessed poor robustness against systematic parameter 
perturbations and external disturbances.  

According to the above review, stable control of 
spherical robots on an inclined plane is still rarely 
covered and has not been well solved, although it plays 
an important role in many practical exploring 
applications. This study focuses on practical solutions 
for stabilization and control of pendulum-driven 
spherical robots like BYQ-VIII on an inclined plane. 
BYQ-VIII is a novel spherical robot using a pendulum-
based design and the structure of the robot is shown in 
Fig. 1. The spherical robot has the internal driving unit 
mounted inside the spherical shell. The steering motion 
of the robot is controlled by tilting the pendulum and 
the driving motion is realized by swinging the 
pendulum indirectly through the internal gimbal. The 
main contributions of this study include two parts. 
Firstly, the planar dynamics of the spherical robot on an 
inclined  plane  are  derived   and  a  variable   structure  
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Fig. 1: The basic structure of BYQ-VIII 

 
controller is proposed for set point regulation of the 
planar     motion.   Secondly,     the     three-dimensional 
dynamics of the spherical robot on an inclined plane are 
deduced and a tracking control algorithm is presented 
for stabilizing the robot to track a desired trajectory on 
the inclined plane. 

 

PLANAR DYNAMICS AND CONTROL 

 

Planar dynamics: The robotic system can be greatly 

simplified by taking advantage of its inherent geometric 

symmetry. By only considering the performance within 

the plane of the rolling ahead motion, we can remove 

the non holonomic constraints normally associated with 

a rolling sphere. We further reduce complexity by 

imposing constraint conditions of no slip and no 

bounce. In order to leave some generality, we assume 

the planar model to be rolling on an arbitrary incline of 

γ degrees. The idealized planar model for the spherical 

mobile robot is shown in Fig. 2 and the definition of the 

model parameters is listed in Table 1. 
We assume that the mass of the pendulum link is 

negligible relative to the shell and eccentric mass and 
we also model the eccentric mass as a point instead of a 
rigid body. We impose the assumptions to reduce the 

system to two coordinates: α for sphere rotation angle 

and φ for pendulum swing angle. Using the Lagrange 
equations, the dynamics of the planar motion of the 
spherical robot can be described as: 
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Fig. 2: Simplified planar model for the robot 

 
Table 1: Parameter definition of the planar model  

m Mass of the spherical shell 

mi Mass of the internal gimbal 

mp Mass of the pendulum 

Is Moment of inertial of the shell 

Ii Moment of inertial of the internal gimbal 

l Length of the pendulum 

r Radius of the spherical shell 

g Gravitational acceleration 

γ Slope inclination angle 

τ Torque applied to the pendulum 

 

Considering the dynamic equations in (1), two 

states of equilibrium can be easily derived. Firstly, 

consider the case in which the robot sits stationary on 

the slope. In this case, all angular velocities and 

accelerations reduce to zero. When we enforce this 

condition upon (1), they reduce to: 

 

( ) sin sinγ φ+ + =i p p om m m gr m gl
                    (2) 

 

where, we use the notation that φ0 denotes the 

equilibrium value of φ.  

It stands to reason that there exists a limiting value 

of the slope γ after which the robot will be incapable of 

holding its position. To determine this operational 

boundary we solve for φo in the above equation. The 

resulting solution is: 
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Clearly, γ must be bounded above and below to 

ensure an inverse sine operand less than unity: 
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The bounds associated with (4) correspond to 

stable node bifurcations at which the equilibrium 

solutions   coalesce  and disappear. This phenomenon is 
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associated with the dynamic condition of whirling in 

which the robot unsuccessfully attempts to either 

remain stationary or climb the slope. 
 The second equilibrium condition can be defined 

by assuming that the robot maintains a constant velocity 
over constant slope terrain. This condition can also be 

satisfied by setting �� = 0. When this condition is 
enforced upon (1), we can find the equilibrium 
pendulum angle continues to satisfy (3). 

 
Control design: Consider the following coupling 
nonlinear systems which can be divided into two 
subsystems as follows: 
  

( ) ( ) ( ) ( )
3 41 2

2 1 1 4 2 2

: :
==  

 
= + = +  

&&

& &

x xx x
A B

x f b u x f b ux x x x
 (5) 

 
where, x = [x1, x2, x3, x4]

T
 is the state vector, f1(x), 

b1(x), f2(x), b2(x) are nonlinear functions and u is the 
control input. 

Then we construct the following linear functions as 
sliding surfaces for the two subsystems (Lo and Kuo, 
1998): 
 

1 1 1 2 2 2 3 4= + = +s c x x s c x x
                           (6) 

 
where,  C1 and  C2 are positive constants. 

We define an intermediate variable Z, which 
represents the information from subsystem A and 
incorporate it into s2. Therefore, the sliding surface s2 
can be modified as (Lin and Chin, 2006): 
 

 
( )2 2 3 4= − +s c x z x

                                          (7) 
 

Here the intermediate variable Z is related to S1. 
For decoupling control, we define Z as: 
 

( )1 Utanh= Φ ⋅zz s z
                                        (8) 

 
where,  
ZU : The upper bound of abc(z), 0<ZU<1 

Φz : A positive constant  
tanh(.) : The hyperbolic tangent function defined as 

follows: 
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Since ZU is less than one, Z presents a decaying 

signal. As S1 decreases, z decreases too. When S1 → 0, 

we have z → 0, x3 → 0 and then S2 → 0 and the control 
objective is achieved. 
Differentiating (8), Z

.
can be calculated as: 
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                                        (10) 

where, 
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Differentiating (7) and using (10), we can calculate 

���  as: 

 

( ) ( )2 2 4 2 2 1 2 1 2 2 1
= + − + + −&s c x f c c x f b c b uα α

 (11) 

 

The equivalent control Ueq can be obtained from ���   
= 0, i.e.,  
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We further assume the control input u to take the 

following form: 

 

= +eq swu u u
                                                    (13) 

 

Here usw is the switching control. In order to 

construct usw, we define a Lyapunov function as V = ½ 

s
2

2. Using (11) and (13), we can obtain ��  as: 

 

( )2 2 2 2 2 1= = −& &
sw

V s s s b c b uα
                             (14) 

 

We choose the switching control usw as follows: 
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where, η and k are positive constants. 

 

Theorem 1: Suppose that the system (5) is controlled 

by the control input described in (12), (13) and (15), 

then the sliding surface S2 is asymptomatically stable. 

 

Proof: Substituting (15) into (14), we can obtain: 

 
2

2 2 2 2 0= ≤ − − ≤& &V s s s ksη
                                (16) 

 

Integrating both sides of (16), we have: 
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From (17), we can further obtain: 
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Table 2: Parameter definition of the 3D model 

ψ, θ, φ Precession angle, lean angle and spin angle of the spherical shell respectively 

β1, β2 Rotation angle of the internal gimbal and pendulum respectively 

xs, ys, zs Coordinates of the mass center of the spherical shell with respect to the inertial frame 
xi, yi, zi Coordinates of the mass center of the internal gimbal with respect to the inertial frame 

xp, yp, zp Coordinates of the mass center of the pendulum with respect to the inertial frame 

Ixxs, Iyys, Izzs Moment of inertia of the spherical shell about X, Y and Z direction 
Ixxi, Iyyi, Izzi Moment of inertia of the internal gimbal about X, Y and Z direction 

 

 
 
Fig. 3: Coordinate system configuration for the robot 
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From (18), we have s2ϵL∞ and s2ϵL2. But from (16) 

we have � � =  ����� < ∞, then we can obtain ��� ∈ �
,. 

According to babalat’s lemma, we have lim�→
 �� = 0. 

 

THREE-DIMENSIONAL DYNAMICS  

AND CONTROL 

 

Kinematic analysis: We assign four coordinate frames. 

Let ∑oXYZ be a fixed inertial frame whose XY plane is 

anchored to the surface of the inclined plane and Z is 

the vertical position to the surface. Let ∑BXbYbZb be 

the body coordinate frame whose origin is located at the 

center of the sphere B. Let ∑CXcYcZc be the internal 

gimbal coordinate frame, whose center is located at the 

center of mass of the internal gimbal C. Note that Zc is 

always parallel to Zb. Let ∑DXdYdZd   be the pendulum 

coordinate frame, whose center is located at point D. 

Note that Yd is always parallel to Yc. The variable 

definition of the robot model is listed in Table 2 and the 

coordinate system configuration of the robot is shown 

in Fig. 3. 

Let (I, j, k) and (l, m, n) be the unit vectors of the 

coordinate frames ∑O and ∑B respectively. Then the 

transformation between the two coordinate frames is 

given by: 
 

0
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where, sin(a) and cos(a) are denoted by Sa and Ca  

respectively in the remainder of this study and the 

subscripts represent the angles of the trigonometry. 

We define vA and ω to denote the velocity and 

angular velocity of the center of mass of the spherical 

shell with respect to the inertia frame ∑O. Then we 

have: 
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  (20)  

 

The constraints result from the requirement that the 

sphere rolls without slipping on the inclined plane, i.e., 

the velocity of the contact point on the sphere is zero at 

any instant, vE = 0. Then we can express vA as:  

 

A BE E
= × +ωωωωv r v

                                                (21) 

Z
X

Y

X b

Yb

Zb

X c

Yc

Zc

Yd Zd

X d

C

mg
β β

B

θψ

ϕ

ψ

θ

1 2



 

 

Res. J. Appl. Sci. Eng. Technol., 5(6): 2289-2296, 2013 

 

2293 

Here rBE = -rk. Substituting (20) into (21) gives:  
 

( ) 0sx r S C Sψ ψ θθ ϕ+ − =& &&
                                (22) 

 

( ) 0sy r C S Sψ ψ θθ ϕ+ + =& &&
                                (23) 

 

0
s

z =&
                                                                 (24) 

 
The constraints in (22) and (23) are nonholonomic, 

while the constraint in (24) is holonomic and can be 
integrated to obtain: 
  
      Zs = r                                                                    (25) 
 

Therefore, the configuration of the robotic system 
can be described by a vector of seven generalized 

coordinates q = [xs, ys, Ψ, θ, ϕ, β1, β2]
T
. 

 

Dynamic model: We define ωs to denote the angular 

velocity of the spherical shell with respect to ∑B. Then 
we have: 
  

( )s S Cθ θψ θ ϕ ψ= − + + +&& & &ωωωω l m n
                        (26) 

 
The kinetic energy of the spherical shell is given by: 
  

( ) ( )2 2 2 2 2 21 1

2 2
s s s s xxs sx yys sy zzs szT m x y z I I Iω ω ω= + + + + +& & &

 (27) 
 

Substituting (24) and (26) into (27), Ts is obtained. 
The potential energy of the spherical shell is: 
  

( )s sP mg x S rCγ γ= +
                                       (28) 

 
Then the Lagrangian of the spherical shell is: 
  

s s s
L T P= −

                                                        (29) 
 

The center of mass of the internal gimbal coincides 
with that of the sphere, i.e.: 
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We define ωi to denote the angular velocity of the 

internal gimbal with respect to ∑C. Then we have: 
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     (31) 

where, R
C

B is the transformation from ∑C to ∑B. 
Differentiating (30) and using (31), the kinetic 

energy of the internal gimbal is given by: 
  

( ) ( )2 2 2 2 2 21 1

2 2
i i i i i xxi ix yyi iy zzi izT m x y z I I Iω ω ω= + + + + +& & &

(32) 
 
The potential energy of the internal gimbal is: 
  

( )i i sP m g x S rCγ γ= +
                                     (33) 

 
Then the Lagrangian of the internal gimbal is: 
  

i i i
L T P= −

                                                         (34) 
 

The transformation from the center of mass of the 

sphere to that of the pendulum can be described as: 
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where, ��
� is the transformation from ∑O to ∑D, 

��
� = (��

�)� is the transformation from ∑B to ∑C and 

��
�  is the transformation from ∑C too ∑D. 

Differentiating (35) and we can obtain the kinetic 
energy for the pendulum as: 
 

( )2 2 21

2
p p p p pT m x y z= + +& & &

                                   (36) 
 
The potential energy of the pendulum is: 
  

( )p p p pP m g x S z Cγ γ= +
                                   (37) 

 
Then the Lagrangian of the pendulum is: 
  

p p pL T P= −
                                                       (38) 

 

The robot consists of the above three parts, then the 

Lagrangian of the robotic system is: 

  

s i pL L L L= + +
                                                (39) 

 
Substituting (29), (34) and (38) into (39), then L is 

determined. There are only two control torques, i.e., the 

tilt torque τ1 and drive torque τ2, available on the 
system. Consequently, using the constrained Lagrange 
method, the dynamic equations of the entire system are 
given by: 
 

( ) ( ) ( )T,+ = +&& &M q q N q q A q Bλ τλ τλ τλ τ
                         (40) 
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where, ��(�) ∈ ��×�,  �(�, �� ) ∈ ��×" are the inertia 

matrix and nonlinear terms, respectively: 
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The nonholonomic constraints can be formed as: 

  

#(�)�� = 0                                                          (41) 

 

Trajectory tracking: 

We first partition A(q) as A = [A1 ⋮ A2],  

where, 
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We define % =  ��� and consider the following relation: 
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where, q1 = [xs, ys]
T
, q2 = [Ψ, θ, ϕ, β1, β2]

T
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Differentiating (43) yields: 
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Substituting (43) and (44) into (40) and pre 

multiplying both sides by C
T
(q) gives: 
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Using the state variable x = [q
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, we have: 
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where, 
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We apply the following nonlinear feedback: 
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The state equation simplifies to the form: 
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The nonholonomic system in (48) is input-output 

linearizable if a proper set of output equations are 

chosen. Consider the following output equations: 

  

y = h(q)                                                               (49) 

 

The necessary and sufficient condition for input-

output linearization is that the decoupling matrix has 

full rank (Nijmeijer and Van Der Shaft, 1990). With 

(49), the decoupling matrix Φ(q) for the system is: 

  

   Φ(q) = Jh(q) C(q)                                             (50) 

 

where, Jh (q) = ∂h/∂q is the Jacobean matrix?  

To achieve input-output linearization, we introduce 

a new state variable z defined as follows: 
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Here ℎ'(�) is a vector function such that ()*
� )*+

�, has 

full rank. It is easy to verify that T(x) is indeed a 

diffeomorphism. The system under the new state 

variable z is characterized by: 
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Using the following state feedback: 
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                                      (53) 

 

We achieve the input-output linearization as: 
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y z                                                                (54) 

 

The zero dynamics of the system is -�. = 0 (Slotine 

and Li, 1991), which is Lagrange stable.  

We choose the following output equations for 

trajectory tracking of the three-dimensional motion: 

 

( ) [ ]Ts sx y= =y h x
                                           (55) 

 

Applying the nonlinear feedback in (53), we can 

obtain a linear zed and decoupled system in the 

following form: 

 

 

1

2

s

s

x

y

υ

υ

=

=

&&

&&
                                                             (56) 

 

We define the tracking errors as: 

 
d

1

d

2

s

s

e x x

e y y

= −

= −
                                                         (57) 

 

Here x
d
 and y

d
 are desired values for xs and ys 

respectively. To stabilize the system in (56) and achieve 

desired performance, an outer linear feedback loop is 

designed to place the poles of the system: 

 
d

1 1 2 1 1 1

d

2 2 4 2 3 2

υ υ

υ υ

= − −

= − −

&

&

k e k e

k e k e
                                           (58) 

 

Here /"
0 and /�

0 are desired values for 123 and 423  
respectively. The gains ki(i = 1, 2, 3, 4) are real positive 

constants and are properly chosen to make the 

following dynamics exponentially stable: 

 

1 2 1 1 1

2 4 2 3 2

0

0

e k e k e

e k e k e

+ + =

+ + =

&& &

&& &
                                             (59) 

 

SIMULATION STUDY 

 

Planar motion: We apply the decoupled sliding mode 

control scheme to the spherical robot to demonstrate its 

effectiveness. Defining the system state variable x as 

1 = [6, 6,� �, �� ]� and the control input u as u = τ, we 

can convert the planar dynamics of the robotic system 

in (1) into the canonical form described by (5) through 

coordinate transformation. Here: 

 

[ ] [ ]T T1 1

1 2 1 2= =
− −− % %f ,  f b ,  bM N M B

             (60) 

Table 3: Sliding mode control parameters 

c1 0.5501 

c2 2.3272 
zU 0.9626 

Φz 7.4822 

η 2.7688 
k 0.6769 

 

 
 

 
 
Fig. 4: Tracking result for the planar motion 

 
The robot model parameters are selected from 

Wang (2007) and the controller design parameters are 

listed in Table 3. We assume the robot to execute a rest-

to-rest maneuver on an incline of 10°. The initial and 

desired  values  of  the  system  states  are  chosen  as  

x0 = [0, 0, φo, 0]
T
, x

d
 = [10, 0, φo, 0 ]

T
 respectively. Here 

φo is the equilibrium pendulum angle defined in (3). 

The tracking result of the proposed controller is 

shown in Fig. 4. We can find that not only the rotation 

angle of the sphere but also the swing angle of the 

pendulum can reach their desired values in a short time. 

Before the robot reaches its desired position, the 

pendulum angle has already converged to its 

equilibrium value only after one oscillation. 
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Table 4: Control parameters and initial conditions 

x0 0.3 m y0 0.1 m 
1�8 0 m/s 4�8 0 m/s 
k1 49 k2 14 
k3 49 k4 14 

 

 
 

 
 
Fig. 5: Tracking performance for the 3D motion 

 
Three-dimensional motion: We develop a numerical 
simulation to verify the validity of the trajectory 
tracking control algorithm. The proposed controller is 
used for the robot to track a straight line y = x on an 
incline of 10°. The dimensions and inertial parameters 
of the robot are also selected from Wang et al. (2007). 
In addition, the initial conditions and control parameters 
are chosen as listed in Table 4. 

The tracking performance of the proposed control 
scheme with different desired forward velocities vf is 
depicted in Fig. 5 and the controller gains ki (i = 1, 2, 3, 
4) remain the same in all these cases. The system 
response for the desired path is satisfactory as seen 
from the figure and the robot is able to reach the desired 
path and stay on the path. 

 
CONCLUSION 

 
In this study, we discuss the stabilization and 

control problems of a spherical robot on an inclined 

plane. At first the set point regulation of the planar 
motion is investigated and a decoupled sliding mode 
control method is proposed to strictly guarantee the 
asymptotic stability of the control system. Then we 
investigate the control algorithm for trajectory tracking 
of the three-dimensional motion and derive a nonlinear 
feedback that guarantees input-output stability and 
Lagrange stability of the overall system. Finally, the 
simulation results verify the effectiveness of the 
proposed control schemes. Future research on the 
proposed methods includes real experiments on the 
prototype of BYQ-VIII and the generalization of these 
methods to the motion control of the robot in complex 
unstructured environments. 
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