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Abstract: A popular approach to semantic segmentation problems is to construct a pair wise Conditional Markov 
Random Field (CRF) over image pixels where the pair wise term encodes a preference for smoothness within pixel 
neighborhoods. Recently, researchers have considered higher-order models that encode local region or soft non-local 
constraints (e.g., label consistency or co-occurrence statistics). These new models with higher-order terms have 
significantly pushed the state-of-the-art for semantic segmentation problems. In this study, we consider a novel non-
local constraint that enforces consistent pixel labels among those image regions having the same topic. These topics 
are discovered by Probabilistic Latent Semantic Analysis model (PLSA). We encode this constraint as a robust Pn 
higher-order potential among all the image regions of the same topic in a unified CRF model. We experimentally 
demonstrate quantitative and qualitative improvements over a refined baseline unary and pair wise CRF models. 
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INTRODUCTION 

 
Semantic segmentation aims to label each pixel in 

an image with a class label from a predetermined set, 

e.g. building, tree, face, body. For the purpose of 

semantic scene understanding, the task of image 

segmentation and labeling is a key challenge in 

computer vision that has received increasing attention 

in recent years (Feng et al., 2002; He et al., 2004; 

Shotton et al., 2006; Kohli et al., 2007; Ladicky et al., 

2009). The PASCAL Visual Object Classes Challenge 

2007 (VOC2007) added semantic segmentation as the 

taster competition, which has been propelling this trend. 

In early studies, Markov Random Fields (MRFs) 

were commonly used, since these undirected graphical 

models allowed one to incorporate local contextual 

constraints in labeling problems in a principled manner. 

Bouman and Shapiro (1994) used Multiscale Random 

Field Models (MSRF) to segment image, where labels 

meant different texture types. Following the study of 

Bouman and Shapiro (1994) and Feng et al. (2002) 

considered the use of Tree-Structured Belief Networks 

(TSBNs) as prior models, successfully applied to 

images of outdoor scenes, with class labels such as sky, 

road, vegetation, etc. Similarly, Kumar and Hebert 

(2003) also adopted the MSRF as a prior model on the 

class labels (i.e., man-made structure or not) and 

modeled the distribution of the multiscale feature vector 

as mixture of Gaussians. Here the GMM capture the 

local dependencies in the observed data. 

However, the traditional MRF usually makes 
simplistic assumptions about the data, e.g., assuming 
the conditional independence of the observed data, 
which hinders capturing complex interactions in the 
observed data that might be required for classification 
purposes. Additionally MRF formulation often does not 
allow any use of data in label interactions. On the 
contrary, by using Conditional Random Fields (CRFs) 
proposed by Lafferty et al. (2001), one can directly 
estimate the conditional distribution over labels given 
the observations and thus avoid making simplistic 
assumptions about the data. Secondly, CRF models 
naturally consider observed data in label interactions. 
Therefore, Kumar and Hebert (2003) firstly 
incorporated CRFs to segment man-made structure 
from complex natural scenes. A generalized approach 
was proposed in (He et al., 2004), which encoded 
contextual information from different scales (local and 
global) and could be applied to complex dataset 
containing seven classes of objects. Shotton et al. 
(2006) exploited novel features based on texting and 
joint boost classifier in the CRF model, which 
performed best on the MSRC dataset at that time. 

These CRF models are known as pair wise CRF 
models. In the pair wise CRF model, every pixel is 
associated with a random variable, both local features 
(encoded as unary potentials) and pair wise correlations 
between neighboring variables define the distribution 
over the joint assignment to all random variables. There 
has been a recent trend to improve results for semantic 
segmentation problems by incorporating higher-order 
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terms into the pair wise CRF models and obtain the 
state-of-the-art performance. These terms bias the 
energy-minimizing solution of the model towards one 
that has a more desirable label configuration, e.g., 
enforcing  label  consistency  in  image regions (Kohli 
et al., 2009) or biasing as few kinds of labels as 
possible (Ladicky et al., 2010). 

Despite these CRF models’ success, they still leave 
some problems to be solved. For example, multiple 
segmentations adopted in these studies cost too much 
computation and the higher-order terms often only 
consider adjacent regions consistent depending on local 
appearance matching. 

Probabilistic Latent Semantic Analysis model 
(PLSA) is originally developed in the statistical text 
literature (Hofmann, 2001). Sivic et al. (2005) applied 
the PLSA model to discover both the object categories 
and their approximate spatial layout in unlabelled 
images. The result is good. In further experiments, we 
find that the regions with the same topic discovered by 
the PLSA model are likely to belong to the same 
objects. This observation inspires our idea imposing a 
constraint on these regions of the same topic. In this 
study, we incorporate, into a unified CRF model, novel 
higher-order terms that encourage consistent labeling 
among all the image regions with the same topic. The 
new higher-order terms actually encode non-local 
constraints and perform well on the test dataset. 
 

METHODOLOGY 
 

Our CRF model extends the standard pair wise 
CRF model (He et al., 2004; Shotton et al., 2006) for 
semantic segmentation by adding novel higher-order 
energy terms. We will first introduce the basic pair wise 
CRF model and then describe the unified CRF model 
with new higher-order terms, followed by the brief 
introduction of the PLSA model and details of 
obtaining these new higher-order energy terms. 

 
Pair wise CRF model: Conditional random field 
models are originally introduced by Lafferty et al. 
(2001), of which the common type used in semantic 
segmentation problem is formulated as formula (1) 
(Kumar and Hebert, 2003): 
 

( | ) exp( ( , ) ( , , ))i i ij i j

i ij

P E x E x xλ∝ +∑ ∑x y y y

    (1) 
 

Here every pixel in an image of size W×H is 
assigned a label from a discrete label set L. The joint 
labeling over all pixels is denoted by x∈L

W×H
 and y 

represents all the features extracted from the image. Ei 
is the unary potential for assigning label xi to pixel Eij 
and i is a contrast-dependent smoothing prior that 
penalizes adjacent pixels i and j for taking different 
labels. The non-negative constant λ trades-off the 
strength of the smoothness prior against the unary 
potential and is chosen by cross-validation on the 
training set. 

The final joint labeling x is decided by the 
Maximum A Posteriori (MAP) solution of (1), so this 
formula can be transformed to the equivalent energy 
function (2). It is notable that the observation y is 
omitted here. Now the values of x maximizing the 
energy function are the desired labeling: 
 

( ) ( ) ( , )i i ij i j

i ij

E E x E x xλ= +∑ ∑x

                        (2) 
 

In the proposed model, the pixel-based unary term 
Ei is identical to that used in Ladicky et al. (2009) and 
is derived from Texton Boost (Shotton et al., 2006). It 
estimates the probability of a pixel taking a certain label 
by boosting weak classifiers based on a set of shape 
filter responses. Triplets of feature type, feature cluster 
and rectangular region define shape filters and their 
response for a given pixel is the number of features 
belonging to the given cluster in the region placed 
relative to the given pixel. The most discriminative 
filters are found using the Joint Boosting algorithm 
(Torralba et al., 2004). To enforce local consistency 
between neighboring pixels we use the standard 
contrast sensitive Potts model (Boykov and Jolly, 2001) 
as the pair wise potential Eij on the pixel level. 

 
Higher-order CRF model: We append to the pair wise 
CRF Eq. (2) one higher-order potential for all the 
regions of the same topic to give: 
 

 unary term higher-order termsmoothness term

( ) ( ) ( , ) ( )i i ij i j t t

i ij t

E E x E x x Eλ µ= + +∑ ∑ ∑x x

14243 142431442443
 (3) 

 

Here xt means a segment (or a super pixel) in an 
image, defined on which Et is the higher-order 
potential, which enforces label consistency in image 
regions. This idea is reasonable, because these 
segments obtained through unsupervised segmentation 
method are likely to belong to the same object, i.e., the 
labels of those pixels in each segment are the same. 
Unfortunately, one segmentation does not make sure 
that every segment contains only one object. Hence, 
current works usually use multiple segmentations of an 

image to obtain xt in the hope that there is always at 
least one correct segmentation (Kohli et al., 2009; 
Ladicky et al., 2010). However, multiple segmentations 
take an expensive computation time and the higher-
order terms defined on those segments only consider 
local information in each image region. In this study, 

we define xt as all the regions of the same topic 
discovered by Probabilistic Latent Semantic Analysis 
model (PLSA) and encode the constraint that all the 
regions with the same topic in the image agree on their 
label. Only one segmentation is used in our method, but 
it can perform as well as those using multiple 
segmentations. Additionally the method outperforms 
the baseline unary and pair wise CRF models described 
in detail in the experiments and results section. 
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PLSA model: Probabilistic Latent Semantic Analysis 

(PLSA) is originally developed in the statistical text 

literature and used to discover topics in a corpus using 

the bag-of-words document representation (Hofmann, 

2001). Sivic et al. (2005) used this model to discover 

both the object categories (treated as topics) and their 

approximate spatial layout without supervision, i.e., 

find the topics present in a group of unlabelled images. 

The proposed unified CRF model is inspired from the 

observation that these regions of the same topic 

discovered by PLSA model probably belong to the 

same class of objects, as shown in Fig. 5. 

The PLSA model is an unsupervised latent space 

model based on the Bag of Words model (BoW) 

(Csurka et al., 2004). Suppose we have a collection of 

images D = d1,…, dN D = d1,…, dN with visual words 

from a visual vocabulary W = w1,…, wM. The corpus of 

images may be summarized in an M×N co-occurrence 

table of counts Nij = n(wi, dj), where n(wi, dj) stores the 

number of occurrences of a visual word wi in image dj. 

This is the bag of words model. The approach of 

obtaining these visual words will be described in the 

following sections. In addition, there is also a hidden 

(latent) topic variable z ∈ Z = z1,…, zk associated with 

each observation, that is the key point in the PLSA 

model. 

A joint probability P(wi, dj, zk) over the M×N co-

occurrence table is modeled as the form of the graphical 

model depicted in Fig. 1a. Marginalizing over topics zk 

determines the conditional probability P(wi|dj): 
 

1

( | ) ( | ) ( | )
K

i j k j i k

k

P w d P z d P w z
=

=∑
                     (4) 

 
where, P (zk | dj) is the probability of topic zk occurring 

in image dj and P (wi| zk) is the probability of word wi 

occurring in a particular topic zk (Fig. 3). This formula 

amounts to a matrix decomposition as shown in Fig. 1b 

with the constraint that both the vectors and mixture 

coefficients are normalized to make them probability 

distributions. For more informative descriptions of the 

model, refer to Sivic et al. (2005) and Hofmann (2001). 

In learning phase, the probability P(wi|zk) for every 
visual word and topic is obtained by maximum 
likelihood estimation and meanwhile the probability 

P(zk | dj) could be computed. The objective function is:  
 

( , )

1 1

( | ) i j

M N
n w d

i j

i j

L P w d
= =

=∏∏
                                    (5)  

 

where, (4) give P(wi|dj). The Expectation Maximization 

(EM) algorithm as described in (Hofmann, 2001) is 

usually adopted to get the solution. Given P(wi| zk) and 

P(zk | dj),   we    can    easily    compute    the    posterior 

probability P(zk|wi, dj) (6) which decides the topic type 

of each segment: 

 
 

(a) 

 

 
 

    (b) 

 
Fig. 1: PLSA model (a) PLSA graphical model, (b) P(wi| dj) 

presentation 
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At last, we seek a vocabulary of visual words, 

which will be insensitive to changes in viewpoint and 
illumination. Here we use the same interest point 
detectors and descriptors as Sivic et al. (2005). In our 
experiment, all the SIFT descriptors are vector 
quantized into the visual words for the vocabulary. The 
vector quantization is carried out here by k-means 
clustering. Six hundred clusters are used for each of the 
Shape Adapted and Maximally Stable regions and the 
resulting total vocabulary has 1,200 words (Fig. 3). 

 
The higher-order terms: For obtaining the regions of 

the same topic, we first segment the image into dozens 

of hundreds of regions. Provided the probability 

P(zk|wi, dj), we can determine the topic types of all 

visual words in each region by choosing the zk making 

the maximum posterior. Then count the number of the 

occurrences of every topic in each region and sort these 

topics in descending order. If the ratio between the first 

two topics is bigger than some threshold, e.g., 0.6, this 

region is assumed to belong to the first topic, otherwise 

this region is ignored. Finally, we can set all the regions 

of the same topic as xt, on which a robust Pn higher-

order potential is defined (Kohli et al., 2009)). Now we 

have constructed the completely unified CRF model 

with a novel higher-order term. 
 
The proposed algorithm procedure: The proposed 
algorithm contains two main parts: training phase and 
test phase, detailed in the following: 
 
Training phase:  
 

• Use the ground truth images (see evaluation dataset 
section) to learn unary and pair wise potentials, i.e., 
Ei   and   Eij   in   Eq.   (3).   The    learning   method 
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(a)  Original frame    (b) The ground truth 

 
Fig. 2: Some sample images from the datasets 

The first column (a) shows the original images and 
column (b) shows the ground truth images from 
MSRC; There are three classes: face, body and 
background, assigned different colors; It is notable 
that we just set two topics in the experiment; (best 
viewed in color) 

 
is identical to the one described in (Ladicky et al., 
2009). 

• Use the original unlabelled images to learn the 
PLSA model (see PLSA model section).  
 

Test phase:  
 

• Segment the test image into some appearance 
consistent regions. In this study, we employ mean-
shift method to find these unsupervised segments 
(Comaniciu and Meer, 2002).  

• Obtain the distribution of visual words in each 
segment according to the learnt PLSA model and 
decide to which topic each region belongs. Now we 
get the higher-order term Et that represents all the 
regions belonging to the same topic (see higher-
order terms section). 

• Determine the final joint labeling x by maximizing 
the objective function (3) using graph cuts (Kohli 
et al., 2009). 
 

EXPERIMENTS AND RESULTS 
 

We performed experiments on the multiclass pixel-
labeling task and compared results on CRF models with 
and without our higher-order potentials.  
 
Evaluation dataset: The evaluation dataset consists of 
the images of the face class from the Caltech 101 
datasets (Fergus et al., 2003). There are 435 images in 
this dataset. Some examples are shown in Fig. 2a. For 
learning the unary and pair wise potentials in the 
unified CRF model, we also use the 30 ground truth 
images from MSRC dataset (Shotton et al., 2006). 
These 30-ground truth images correspond to the face 
images in Caltech, depicted in Fig. 2b. There are three 
classes in this data set: face, body and background. 
Each class is assigned a unique color. It is notable that 
few interest points are extracted from the body regions, 
so we define only two topics in the experiment, in the 
hope of finding face areas and background areas.  

 
 
Fig. 3: The plot of the learnt P(w|z) 
 

 
 

(a) Faces 

 

 
 

(b) Background 

 
Fig. 4: The most likely words for the two learnt topics. (a) 

Shows the visual words for the face topic, which 
capture the typical features of face, e.g., eye, tip of the 
nose, corner of the mouth, chin, (b) shows the visual 
words for the background topic 

 
All the face images are used to learn the PLSA 

model, except the 30 images corresponding to the 
ground truth images in MSRC. All the values of P(wi| 
zk) for every word and topic are obtained in the learning 
phase. We randomly split the 30 images into equal 
halves, 15 images for training the unary and pair wise 
potentials in the unified CRF model and the rest for 
test. 

 
The learnt PLSA model and topic discovery: The 

P(w|z) learnt from the 405 original images is plotted in 

Fig. 3, in which the gray values mean the probability. It 

is also interesting to see the visual words, which are 

most probable for a topic by selecting those with high 

topic specific probability P(wi|zk). These are shown in 

Fig. 4. It is easy to find that these visual words do 

capture typical features of the learnt two topics.  

The key insight of the proposed algorithm is the 

discovery of those regions belonging to the same topic 

and  constraint on the semantic segmentation by higher- 
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Fig. 5: Image as a mixture of visual topics using two learnt 

topics. (a) Is the original frame. (b) and (c) depict the 

image as a mixture of a face topic (green) and 

background topic (red) separately using cross markers 

or ellipses. (d) Shows the segmentation result by 

mean-shift (Best viewed in color)  

order terms. Figure 5 gives some intuitive sense about 

this insight. Figure 5b-c show the discovered two visual 

topics face (green) and background (red). Here only 

visual words with P(z|w, d) greater than 0.8 are plotted. 

The cross markers represent the locations of detected 

interest points and the ellipses represent the supporting 

domains of each interest point. There is an impressive 

alignment of the words with the corresponding object 

areas of the image. Therefore, it is easy to decide to 

which topic the segments by mean-shift (shown in (d)) 

belong (see the higher-order terms section). Then the 

same topic constraint on the unified CRF model 

improves the semantic segmentation accuracy as shown 

in Fig. 6. For example, our method can recognize the 

body and background regions correctly which tend to 

be wrongly labeled in the baseline models. 

 

RESULTS 

 

Quantitative results are shown in Table 1 and some 

qualitative results are shown in Fig. 6. We compare 

 

 
 

        (a) Original frame               (b) Unary CRF             (c) Pair wise CRF          (d) Our method             (e) Ground truth 

 

 
 

Fig. 6: Example results from our multiclass pixel labeling experiments on the Caltech 101 dataset 

Each row shows a different instance; The test image is shown in column (a); Semantic class predictions for the unary, pair 

wise model and one with higher-order potentials constrained by same topic are shown in columns (b), (c) and (d), 

respectively (best viewed in color) 

 
Table 1: Pixel wise semantic labeling accuracy for the face images from the Caltech 101 dataset 

 Method 

--------------------------------------------------------------------------------------------------------------------------------------- 

 Baseline 

------------------------------------------------------------------ 
 

 

Class Unary Pair wise Our algorithm Hierarchical CRF model 

Face 90.06 92.13 93.21 94.08 

Body 73.29 74.89 75.98 77.04 

Background 89.92 92.08 94.62 95.60 
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baseline unary and pair wise CRF model against our 
proposed model with the same topic constraint. For the 
three classes, the proposed higher-order potential with 
the same topic provides a small increase in accuracy: at 
least 1.1%. We note that our result is below the state-of-
the-art result by Ladicky et al. (2009). It is not 
surprised, since Ladicky segmented every image 
multiple times with different and adapted parameters, 
but we just do only one segmentation. 
 

CONCLUSION 
 

Much recent study on semantic segmentation 
problems has focused on the addition of higher-order 
energy terms to encode preferences for particular label 
configurations. We have explored one such term that 
encodes a novel preference for consistent label 
assignments among those regions of the same topic. 
Instead of multiple segmentations, only one 
segmentation is used to discover these topics by an 
unsupervised approach. The experiment demonstrates 
that our algorithm is efficient and performs well. 
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