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Nonlinear Forced Vibration Analysis for Thin Rectangular Plate on Nonlinear  

Elastic Foundation 
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Technology, Changsha, 410114, China 
 

Abstract: Nonlinear forced vibration is analyzed for thin rectangular plate with four free edges on nonlinear elastic 
foundation. Based on Hamilton variation principle, equations of nonlinear vibration motion for thin rectangular plate 
under harmonic loads on nonlinear elastic foundation are established. In the case of four free edges, viable 
expressions of trial functions for this specification are proposed, satisfying all boundary conditions. Then, equations 
are transformed to a system of nonlinear algebraic equations by using Galerkin method and are solved by using 
harmonic balance method. In the analysis of numerical computations, the effect on the amplitude-frequency 
characteristic curve due to change of the structural parameters of plate, parameters of foundation and parameters of 
excitation force are discussed. 
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INTRODUCTION 

 
Rectangular plates are readily seen in many civil 

engineering applications such as highway concrete out 
layers, airport runways, building foundations and so 
forth. Researches about its mechanical behaviors have 
been undertaken by numerous experts, optimized 
Kantorovich method and analyzed the self-vibration 
characteristics of thickness-varying rectangular plates 
with one edge free by hypothesizing on its vibration 
mode function (Sonzogni et al., 1990). Researched the 
vibration patterns of moderate thickness rectangular 
plates with multifarious foundation models: considered 
coupled effect of elastic foundation, a nonlinear 
constant load analysis for moderate rectangular plate 
was conducted (Xiao et al., 2004), a nonlinear free 
vibration equation for moderate thickness cracked 
plates had been set and solved (Xiao et al., 2005), its 
self-vibrating amplitude-frequency characteristic curve 
was then analyzed; researched nonlinear vibration of 
disconnected  thin  plate  on  elastic  foundation (Xiao 
and Fu, 2006) and conducted a analysis of disconnected 
thin rectangular plates’ self-vibration on nonlinear 
elastic foundation (Xiao and Yang, 2011), meanwhile , 
the constant load characteristics of four free edges 
rectangular plate was discussed with consideration of 
nonlinear elastic foundation (Xiao and Zhong, 2009). 

Established an approach to nonlinear vibration of 
orthotropic thin rectangular plate on elastic foundation 
by using orthogonal collocation and solved its nonlinear 
eigenvalue with iterative method (Bhaskar and Dumir, 

1988). Also, there were researches of rectangular 
plates’ vibration on linear elastic foundation (Qu and 
Liang, 1996) and circle plates’ bifurcation and chaotic 
behavior on nonlinear elastic foundation (Qiu and 
Wang, 2003). 

So far, much attention of examinations of plate 
vibration on elastic foundation has been drawn to the 
realm of free vibration, whereas forced vibration was 
discussed less frequently. Hence, this study presents a 
research of the nonlinear forced vibration 
characteristics for thin rectangular plates on nonlinear 
elastic foundation to extend a discussion of forced 
vibration characteristics of plates. Hamilton energy 
differentiation principles has been utilized for building 
a nonlinear forced vibrating equation of thin rectangular 
plates under harmonic load, later it is solved by 
exploiting Galerkin method and Harmonic balance 
method. Effect of variables like geometric and 
mechanical parameters of plates, response modus of 
foundation, varying stimulus force on amplitude-
frequency characteristic curve of plates’ forced 
vibration, their resonance characteristics were also 
analyzed. The outcomes serve as theoretical merit to the 
direction of construction programs. 

 

CONTROL EQUATIONS 

 

Assume a thin rectangular with length α, breadth b, 

thickness h and four free edges. Lateral distribution of 

the harmonic load is described as q(x, y, t) = q0(x, y) 

cos θt, in which q0 (x, y) is the amplitude of excitement,  
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Fig. 1: Loaded thin rectangular plate 

 

θ is the frequency of exciting force. A nonlinear Winker 

foundation is considered, p = - k1w - k2w
3
 in which w, 

k1 and K2 are vertical dynamic deflection of plate, 

linear and nonlinear rigidity coefficients of elastic 

foundation, respectively. Figure 1 shows a loaded thin 

rectangular plate. 

The total potential energy of this system is gained 

by Π = Π1 + Π2 - Π3, as Hamiltion energy 

differentiation principle interprets, when the system 

reaches to a steady balance, its total potential energy 

has the minim value, alas δΠ = 0, or δΠ1 + δΠ2 - δΠ3 = 

0Π1 is the strain energy of elastic plate, its value can be 

obtained by: 
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Π2 is the study due to motor inertia, the particular 

value is calculated by: 
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where, P, J are the density and moment of inertia of 

elastic plate, respectively. 

Π3 is the study done by external force: 
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where, , , , ,x y z x yN N N M M  are the known force and 

torment on the boundary of elastic plate, while 

, , , , ,
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x y

α β
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= =
∂ ∂

are the known displacement on 

the boundary. 

Therefore, the motor control equations of thin 

rectangular plate on nonlinear elastic foundation are: 
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where, Nx, Ny, Nxy membrane internal force of plate and 

their relationship are can be described as: 

 

2

2

[ , , ] [ , , ]
h

hx y xy x y xy
N N N dzσ σ σ

−
= ∫ ；

  

 

Mx, My, Mxy are internal torques of plate whilst 

fitting in the following relationship: 

 

2

2

[M ,M ,M ] [ , , ]z
h

hx y xy x y xy dzσ σ σ
−

= ∫ ；

 

 

Qx, Qy Are transversal shear which can be 

calculated by:  
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For thin rectangular plate with free edges, the 

boundary conditions of its surface forces are: 

 

0, , , ,

0, , , ,

x x xy xy x x

x x xy xy

y y xy xy y y

y y xy xy

x a M M M M Q Q

N N N N

y b M M M M Q Q

N N N N

 = = = =


= =

= = = =

 = =

, ；

,

               (2) 

 

According to the interrelationship between thin 

rectangular plate’s thin film stress, its bending stress 

and its displacement, she control equation of forced 

vibration of four-edge-free thin rectangular plate on 

nonlinear elastic foundation are: 
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where, the flexural rigidity of plate is D = Eh
3
/12 (1 - 

µ
2
); elastic modus and Poisson’s ration are E, µ 

respectively; ø  is the stress function. 

To clarify equations, a few dimensionless 

parameters are introduced: 
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where, Q = Q0 (ξ, η) cos Θτ        

 

Hence, the dimensionless control equations of 

forced vibration of four-edge-free thin rectangular plate 

are shown as: 
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Its dimensionless boundary conditions are: 
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SOLUTION TO THE EQUATION 

 

Based on plate’s boundary conditions solution to 

Eq. (5) is assumed in terms of separated functions: 
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The shape functions distinctively satisfy all 

boundary conditions 

To introduce Eq. (7) to (5) the residual value is 

acquired, then the orthogonality relation is preset by 

combining Galerkin method and Vibration Eigen 

functions of beam, nonlinear ordinary differential 

equations Fmn(τ), Wpq(τ) are shown as: 
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where, α
mn

1ij to α6ij  are constant coefficients whose 

values are mentioned elsewhere. 

In general Eq. (8) are solved with harmonic 

balance method, thus unknown functions Fmn(τ), Wpq(τ) 

are expended as Cosine Fourier series for time 

parameter τ: 
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where, coefficients F
(k)

mn, W
(k)

pq are the k-th amplitude 

of harmonic waves for Fmn(τ) and Wpq(τ), respectively; 

ω, the dimensionless frequency of plate’s forced 

vibration, is associated with circular frequency of 

forced vibration ϖ : 
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where, ω0 and 
0ϖ  are dimensionless and dimensional 

base frequency for linear forced vibration of plate, 

respectively. 

To combine Eq. (9) and (8) the control equation for 

plate’s frequency of forced vibration is present as: 
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where, M = W
(k)

pq cos kωτ 

Steps for calculation are as followed: First off enter 

the geometric and mechanical parameters of plate, 

elastic modulus of foundation and exciting force, then 

using Eq. (10) to yield ω, Eq. (9) for one set values of 

Fmn, Wpq, F(ξ, η, τ) and W(ξ, η, τ) is calculated through 

Eq.  (7).   Finally,   the   amplitude-frequency   curve  is  
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Fig. 2: Amplitude-frequency curve of various thick plates 

 

illustrated for thin rectangular plate on nonlinear elastic 

foundation when plate’s parameters and foundation’s 

parameters vary. 

 

EXAMPLE ANALYSIS 

 

Without consideration of exciting force effect, this 

issue withdraws to issue of free vibration, whose 

theoretical analyses and solution were given by Xiao 

and Yang (2011). Those analyses verify the accurate 

and suitable choices of algorithm, the trial function and 

solution. 

Assuming base soil is common cohesive soil, 

parameters  for  elastic  plate  are a = 1.8 m, b = 1.5 m, 

h = 0.1 m, E = 3×10
4 
MN/m

2
, µ = 0.15, ρ = 2450 kg/m

3
; 

the rigid coefficients of foundation are k1 = ×10
2 

MN/m, k2 = 40 MN/m
3
; dimensionless amplitude of 

exciting force is Q0 (ξ, η) = 0.01, dimensionless 

frequency ratio is s = Θ/ω = 1 

Three plates with thickness of 0.05, 0.1 and 0.15 m 

were selected while other parameters are identical. 

Figure 2 indicates the effect of thickness on Amplitude-

frequency curve. When amplitude of forced vibration 

stay the same, the frequency of plate’s forced vibration 

increases drastically as thickness became greater. 

Figure 3 and 4 illustrate foundation parameters K1 

and K2’s impact on Amplitude-frequency curve of 

plate’s forced vibration. With a stable amplitude 

increment of K1 and K2 lead to enhance in frequency 

which indicates moderate elevation of foundation’s 

response modulus helps to increase the forced vibration 

frequency of plate. 

Figure 5 illustrates the effect of exciting force’s 

amplitude on Amplitude-frequency curve of plate’s 

forced vibration. As exciting force amplitude abates 

from 1.5 to 0.5 while other parameter still, forced 

vibration frequency increases. 

 
 
Fig. 3: Amplitude-frequency curve of different K1 

 

 
 
Fig. 4: Amplitude-frequency curve of different K2 

 

 
 
Fig. 5: Amplitude-frequency curve of different exciting force 

amplitude 

 
Seen in Fig. 6 when s = Θ/ω approaches to the 

value  1,   namely   when   frequency   nearly   equal   to 
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Fig. 6: Effect of exciting force frequency on amplitude-

frequency curve of plate 

 

system’s fixed frequency, the amplitude of forced 

vibration w drastically rises, the resonance region 

approximately lies between s = 0.7 to 1.3. Also, as 

foundation’s linear coefficient strengthens, nonlinear 

characteristic of system fades. 

 

CONCLUSION 

 
This study presents an analysis of harmonic-

excited forced vibration of thin rectangular plate on 
nonlinear elastic foundation, including the 
consequential effects of mechanical parameters of plate, 
response modulus of foundation and change in exciting 
force on Amplitude-frequency curve. 

The results show, in general, frequency of forced 

vibration augments along with increment of plate’s 

amplitude. When amplitude remains stable, increments 

in plate’s thickness and response modulus of foundation 

result in rise of elastic plate’s forced vibration 

frequency; while higher amplitude of exciting force 

leads to lower forced vibration frequency. Especially 

when frequency of exciting force is 0.7 to 1.3 times of 

system’s fixed frequency forced vibration amplitude 

intensively expends a clearly characteristic of resonance 

effect. Therefore in civil engineering application such 

characteristic can be exploited in structure and 

pavement demolition, as adjusting load frequency to 

system’s fixed frequency. 
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