
Research Journal of Applied Sciences, Engineering and Technology 5(6): 2053-2058, 2013
DOI:10.19026/rjaset.5.4749
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2013 Maxwell Scientific Publication Corp.
Submitted: July 27, 2012 Accepted: September 17, 2012 Published: February 21, 2013

Corresponding Author: Jianmin Pang, National Digital Switching System Engineering and Technology Research Center,

Zhengzhou 450002, China
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

2053

Research Article

A Novel Disassemble Algorithm Designed for Malicious File

Jianmin Pang, Yichi Zhang, Chao Dai, Di Sun and Qiang Wang
National Digital Switching System Engineering and Technology Research Center,

 Zhengzhou, 450002, China

Abstract: In order to avoid being static analyzed, hacker rely on various obfuscation techniques to hide its
malicious characters. These techniques are very effective against common disassembles, preventing binary file from
being disassembled correctly. The study presents novel disassemble algorithm which based on analyzed Control
Flow Graph (CFG) and Data Flow Graph (DFG) information improve the ability of the disassembly. The proposed
algorithm was verified on varied binary files. The experiment shows that the method not only improves the accuracy
of disassemble but also greatly deal with malicious files.

Keywords: Control flow graph, disassemble, obfuscation, reverse slice

INTRODUCTION

Modern reverse engineering techniques

automatically recognize library functions, local
variables, stack arguments, data types, branches, loops,
etc. This technology has been widely used in malicious
detecting and vulnerability scanning. For virus analysis,
we disassemble binary executable file to obtain its
machine instructions. Unfortunately, hackers use many
techniques to disguise malware against reverse analysis
(Mila, 2004; Chao et al., 2008).

The term obfuscation refers to techniques that
preserve the program's semantics functionality while, at
the same time, making it more difficult for the analyst to
extract the program's function (Abhishek, 2009). These
difficulties caused by follow reasons:

• Modern computer based on Von Neumann

architecture. In this architecture don’t distinguish
between data and instructions. With the
development of compile technology, data can be
defined at any time (Arun et al., 2005). So code
sections commonly contain data such as jump tables
or string constants.

• The Intel x86 instructions set architecture contains
variable length instructions that can start at arbitrary
memory address (Intel-64 and IA-32, 2009). In this
case, disassemble indentify the address of the next
instruction depend on disassembled instructions.
When the disassemble is initially off by a byte, the
following instructions are erroneous.

• To determine the address of branches often
according to experience and assumptions (such as:
the next instruction of Call was return location).

These assumptions for normal software are right,
but don’t suit malware (Konstantin, 2005).

In this study, we present a novel disassemble

algorithm which based on analyzed Control Flow Graph
(CFG) and Data Flow Graph (DFG) information
improve the ability of the disassembly. The proposed
algorithm was verified on varied binary files. The
experiment shows that the method not only improves the
accuracy of disassemble but also greatly deal with
malicious files.

LITERATURE REVIEW

Common disassemblers translate binary code into

correspond machine instruction using lookup tables.
Generally, we can divide the disassembly algorithms
into two categories: the linear sweep algorithm and the
recursive traversal algorithm.

The linear sweep algorithm (Cullen and Saumya,
2003) disassembles from the start of a program’s entry
point and then sweeps on the whole code section and
disassemble each instruction encountered in the process.

The main weakness of the linear sweep algorithm is
that it is very difficult to distinguish between code and
data under the Von Neumann architecture, because data
can be embedded in code section which may lead to the
misinterpretation of data into code. Due to overlapping
instructions, misalignment can lead to an alternate
sequence of instructions that does not reflect the
instructions that are actually executed at runtime.
Alternate instruction streams that are a consequence of
misalignment have a tendency to realign with the correct
stream after few instructions (Nathan et al., 2008);

Res. J. Appl. Sci. Eng. Technol., 5(6): 2053-2058, 2013

2054

together with the fact that the x86 instruction set is so
densely coded that most byte sequences constitute valid
code, this can make disassembly errors introduced by
misalignment hard to spot. At present, disassembles
which use the linear sweep algorithm comprise OBJ
Dump and Windbg, etc.

Compared to the linear sweep algorithm, recursive
traversal algorithm (Cullen and Saumya, 2003) decides
the next instruction to disassemble via the control flow
of the program. When encountered the control transfer
instruction (such as jmp, call, ret, etc.), it will not
continue to disassemble sequentially, but starts to
disassemble from the target address of the control
transfer instruction. As for the non control transfer
instruction, this algorithm would deal with them just like
linear sweep. This allows the disassemble to skip over
data bytes mixed into code sections. On the downside,
this strategy is not guaranteed to process all bytes in the
executable, since not all code locations are accessed
through direct branches from the entry point.

The obfuscation with indirect jumps just makes use
of the disposal of control transfer instruction to achieve
the goal of confusing the disassemble. It is used by IDA
Pro. It can handle obfuscations in certain cases by
getting across junk bytes partly (such as junk bytes after
jump instruction) while linear disassemblers can not
deal with this. Unfortunately, neither of them can
identify the indirect jump target address. That’s why a
novel algorithm should be introduced.

Indirect jump obfuscation: One of the main problems
when analyzing assembly language is indirect branch
instructions. These instructions correspond to jump
statements, but jump target is calculated at runtime. In
binary, any address in the code section is a potential
target of an indirect branch. There are no explicit
symbols in code section. If failure to statically resolve
the target of an indirect branch instruction, it will leads
to an incomplete control flow graph. So we couldn’t
obtain completely machine code.

Through above analysis can be see that hacker
adopt the method which changing the direct jump to the
indirect jump. Figure 1 shows the detail of the method.

In Fig. 1, we can find that the specific address
(Pro1) of the direct jump (Jmp Pro1) can be calculated
by disassemble. At the same time, we can according to
the target address for append edge which is from Jump
instruction (Jmp Pro1) to target addressing (Pro1).

For the indirect jump case, disassemble analyze the
indirect jump instruction found the jump target stored on
the register (eax). Due to the value of register is
dynamic generated; we couldn’t get the specific address.
If we adopted recursive traversal algorithm, we couldn’t
disassemble the target of the jump. On the other side, we
adopted linear sweep algorithm without considering the
CFG. Once the data stored in the code section, the data
will trade as code disassemble, which will lead to
disassemble derail.

Fig. 1: Changing direct jump to indirect jump

Fig. 2: The segment of indirect jump codes

The obfuscation is so simple, but the efficacy is
terrific to disassemble. Although, some disassemble
adding constant propagation function against this
obfuscation, which is no use for data hidden assignment.

DISASSEMBLE FRAMEWORK

To deal with indirect jump problem, we mainly rely

on the partial CFG and DFG. By analyze those graph,
we can extract the target of the jump instruction.
Specific say, indentify the target of indirect jump is
divided three steps: firstly, ascertain the variables that
related the jump target. In one process, reverse slice
based on the built CFG to extract related variables.
Secondly, depending on the reverse slice result calculate
the address of jump target in one branch. Lastly, append
the edge of the indirect jump target. Then calculate the
impact on the original DFG. If the DFG changes, then
recalculate DFG till appear fixed point.

Before propose the method that extracts the indirect
jump target, we introduce the typical example of the
indirect jump, as shown in the Fig. 2.

From the Fig. 2 we can see an indirect jump
instruction (jmp eax) in this code fragment.
Disassembling this code fragment, we can get the
indirect jump instruction. But we couldn’t get the

Res. J. Appl. Sci. Eng. Technol., 5(6): 2053-2058, 2013

2055

address of the indirect jump. After that, control flow
interruption, so that disassemble couldn’t continue to
work.

Reverse slice: When the indirect jump instruction was
found, we denote the place of the instruction and put the
instruction in the stack (TI). After the program CFG
built, we take out an indirect Jump Instruction (JI) from
the TI and recode the address of JI. Pick up all
instruction in the basic Block (BJI) which is included JI.
Calculate the variables related to the jump target of JI
and then put those variables into the Set (SV). Reverse
filtrate the SIB according to the SV, which store in RI
appending to SR. Put the variables related by RI to the
SV as reverse slice standard.

After deal with a basic block, looking up its father
node (SFB) stored in the father stack (SSB). IF SSB is
not empty, pop the basic block of SSB as current B
reverse slice. Otherwise, declare all basic block in the
process have analyzed completely. At the end of the
algorithm, we can get the instruction which related by
indirect jump target.

On the basis of the relevant references, the
algorithm which reverse slice get the indirect jump

target relay on the CFG in a proc. The input of the
algorithm is the address of indirect jump target, we can
obtain the basic block and proc related JI. The output is
the reverse Slice Result (SR), which store the data flow
of indirect jump target.

Target address calculate: Through reverse slice
process, we can get the instructions related to the target
address. The target address calculates stage is based on
the reverse slice results. In this calculate stage, we need
recode every changed variables for calculate jump
target. In addition, those reverse slice instructions
belong to multi-branch, which will eventually influence
the target result. So calculate the target have two cases:
in the first case, every branch keeps other branches
calculate result alone, process simply and calculate the
target by the branch self; in second case, when fall
across the value of a variable depend on another branch,
we should suspend until related branch analysis result
come back.

According above idea, Fig. 3 shown the flow of the
algorithm of calculates the indirect jump address. The

Fig. 3: The algorithm of calculate the indirect jump address

Res. J. Appl. Sci. Eng. Technol., 5(6): 2053-2058, 2013

2056

Fig. 4: The algorithm of append control flow of jump target

input of the algorithm is the instructions of reverse Slice
Result (SR); analyze the CFG and DFG to get the
possible indirect jump address (Target).

For the above case, calculate the indirect jump
target. In the process have two branch and assignment to
EAX in each branch. So we need calculate two branches
which assignment to EAX.

Append control flow: Through indirect jump
calculating, we can identify the possible jump target.
After that, append the fresh ascertain target to the CFG.
The newly edge of DFG will indicate disassemble to
decode uncover code section. After that, reanalyze the
DFG of process, judge whether the newly appending
edge affect the DFG. So we will repeat step two
recalculate the assignment of variable. If have new
assignment, we need append new target address and
related CFG until doesn’t have new DFG (fix point
appeared). Figure 4 shown the algorithm of appends
control flow.

At the same time, analyze original DFG look up
fresh target address. The input of this algorithm is the set
(Target) of indirect jump address, which re-decode the
jump target rely on the new appended CFG and re-
analyze the DFG. The output of the algorithm is the
completely CFG of program and its machine codes.

Fig. 5: The outcome of appended control flow

We can get the indirect jump target and add two
edges to CFG. The two edges both start from the

Res. J. Appl. Sci. Eng. Technol., 5(6): 2053-2058, 2013

2057

Table 1: Sample for experiment
ID Name OBJ dump ID Apro Radux
Normal file 1 At.exe 1.000 1.000 1.000
 2 Comrereg.exe 1.000 1.000 1.000
 3 Csrss.exe 0.990 1.000 1.000
 4 Calc.exe 1.000 1.000 1.000
 5 Dcomcnfg.exe 1.000 1.000 1.000
 6 Write.exe 1.000 1.000 1.000
 7 Notepad.exe 0.960 1.000 1.000
 8 Msdaenum.dll 0.950 0.940 0.980
 9 Msdaer.dll 0.910 0.950 0.960
 10 Msdasc.dll 0.880 0.920 0.950
 AVG 0.969 0.981 0.989
Malicious file 1 Spybot 0.860 0.930 0.980
 2 Arianne.1052 0.820 0.890 0.960
 3 Drox 0.620 0.900 0.960
 4 Format A. F 0.780 0.760 0.990
 5 Trinoo 0.960 0.950 0.930
 6 Virtual root 0.960 0.960 0.970
 7 Weird 0.530 0.920 0.950
 8 Eriz.401 0.680 0.860 0.980
 9 Gildo 0.750 0.900 0.930
 10 Silly.c 0.860 0.820 0.940
 AVG 0.782 0.889 0.959

indirect jump instruction (address: 24), with one side
pointing to the address: 0 and the other side to the
address: 18. After appending control flows, recalculate
the DFG, judge the original data flow whether changes.
After added control flow edge which from address: 24 to
address: 18, the register eax was bring new assignment
in address: 18. So recalculate the indirect jump address,
getting the new target address: 12. Then append new
control flow from address: 24 to address: 12. At this
time, data flow unchanged and fix point appeared
algorithm end. Figure 5 is shown the final outcome.

EXPERIMENTAL RESULTS

To verify proposed method, we build the prototype

system (Radux). We do our experiment on PE format
files to measure the disassemble accuracy. The
experiment results will compare with OBJ dump and
IDA Pro which were popular disassemblers.

The total number of sample in space are 20, which
are divided into benign program and virus program
Virus samples used in the experiments downloaded from
the well-known website VX Heavens (Nathan et al.,
2008). Benign program are selected from operating
system and legal software. The programs we choose are
the PE files under Windows directory after the
installation of Windows XP for the first time. The
experiment results showed in Table 1.

As shown by the result in Table 1, Radux have
decode capable at PE files. Using proposed method not
only deal with normal files with higher accuracy, but
also handle malware. The disassemble accuracy is
higher than other popular disassemblers. In addition the
common disassemblers can deal with properly, but
doesn’t cope with malwares. This is because normal
software didn’t using confusion methods to interfere
with disassembler. But hacker usually adopted
obfuscation methods to escape detect.

CONCLUSION AND RECOMMENDATIONS

Disassemble is usual method to obtain software
function. Hacker often deceives disassemblers by
disguising its actual behavior using obfuscation. This
study proposes a disassemble algorithm based on CFG
and DFG for malware. This technique has been
implemented as part of our system Radux. Experimental
results prove that the approach is effective on
disassemble malicious binary code.

Self-modifying code is usually encountered in static
analysis on executables. Static analysis of self-
modifying code will be the next focal point.

ACKNOWLEDGMENT

This study is supported by the National High-Tech

Research and Development Plan of China under Grant
No. 2006AA01Z408, national project: 2009ZX01036-
001-001 and the scientific and technological project of
Henan Provincial of China under Grant No.
092101210501.

REFERENCES

Abhishek, S., 2009. Identifying Malicious Code

Through Everse Engineering. Springer, New York,
pp: 147-150, ISBN: 978-0-387-09824-1.

Arun, L., U.K. Eric and V. Michael, 2005. A method
for detecting obfuscated calls in malicious binaries
[J]. IEEE Trans. Softw. Eng., 31(11): 955-967.

Chao, D., P. Jianmin and Z. Rongcai, 2008. Research
on deobfuscation against malicious code
obfuscated with conditional jumps [A].
International Conference on Information
Technology and Environmental Systems Sciences.

Res. J. Appl. Sci. Eng. Technol., 5(6): 2053-2058, 2013

2058

Cullen, L. and D. Saumya, 2003. Obfuscation of
execurable code to improve resistance to static
disassembly. Proceedings of the 10th ACM
Conference on Computer and Communications
Security (CCS), Washington DC, pp: 290-299.

Intel-64 and IA-32, 2009. Architectures Software
Developer’s Manual. Intel Corporation.

Konstantin, R., 2005. Efficient Static Analysis of
Executables for Detecting Malicious Behaviors
[D]. Polytechnic University, Brooklyn.

Mila, D.P., 2004. Code obfuscation and malware
detection by abstract interpretation [D]. Ph.D.
Thesis, Department of Computer Science,
University of Verona (Itali), Verona, Italy.

Nathan, E.R., Z. Xiaojin, P.M. Barton and H. Karen,
2008. Learning to analyze binary computer code.
23rd Conference on Artificial Intelligence (AAAI-
08), Chicago, Illinois.

