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Abstract: In this study, a novel discrimination method for known and unknown target using High-Resolution Range 
Profile (HRRP), namely log-likelihood ratio score method, is proposed. The aim of this method is to minimize the 
error probability of discrimination by constructing the unknown target model when the data of unknown target is 
lack. The Gaussian Mixture Model (GMM) is introduced to model the statistical characteristics of target’ HRRPs. 
The unknown-target model, which describes statistical distribution of unknown-target’ HRRPs, is proposed. The 
statistics of unknown target can be computed approximately via finite known-target models in training database. The 
experimental results for measured data show that the discrimination rate of proposed method is about 88%, which is 
higher than that of discrimination method without unknown-target model. 
 
Keywords: Known-target model, likelihood ratio score, target discrimination using HRRP, unknown-target model  

 
INTRODUCTION 

 
The high resolution range profile, which is the 

distribution of scattering centers on target along the 
radar line of sight, carries the information of a target, 
such as size, shape and relative position of strong 
scatter points, etc. This information is very useful in 
target classification. Generally, it is easier to get range 
profile of a target than obtaining a SAR image or an 
ISAR image, because it is no necessary to perform 
complicate moving compensation during one-
dimensional imaging. The HRRP can directly serve as a 
feature vector for target identification. Additionally, 
HRRP-based recognition system can provide real-time 
identification performance; therefore, recently 
researchers have been interested in radar target 
recognition using HRRP.  

Shi and Zhang (2001) presented a new neural 

network classifier, Kim et al. (2002) studied invariant 

features for HRRP (Suvorova and Schroeder, 2002; 

Zwart et al., 2003; Nelson et al., 2003) proposed a new 

iterated wavelet feature of HRRP, Wong (2004) applied 

the features in frequency domain for HRRP recognition, 

Du et al. (2006) studied the two distribution 

compounded statistical model for recognition HRRP. 

However, the above methods belong to classical pattern 

recognition, which only classify the targets that have 

been trained. In the real world, we may not obtain the 

first-hand data of rival country; therefore the aircraft 

may turn out to be an unknown target. In this case, the 

target recognition procedure must consist of 

discriminating and conventional pattern recognition. 

Figure 1 is a simplified block diagram.  

In discriminating, a discriminator is used to 
determine whether the test target is a known-target or 
an unknown-target. If the test target is a known-target, 
then the test target’s data is used to follow the 
conventional pattern recognition, otherwise the test 
target is rejected as an unknown-target. The 
discrimination is of great importance to improve the 
accuracy of recognition. Moreover, based on HRRPs of 
an unknown-target, the new database can be settled up 
and trained, making the new aircraft into a known-
target, which leads to more complete database. 

 There has been little work in discrimination for 
known-target or unknown-target. Du et al. (2006) 
applied Gamma distribution and Gaussian mixture 
distribution to model statistical distribution of range 
cells for target HRRP and recognizes three aircraft 
targets using this two-distribution compounded model, 
but the discrimination for the known-target or 
unknown-target has not been discussed. Mitchell et al. 
(1999) studied the unknown-target rejection in target 
recognition process using the measure of confidence 
that is determined by the joint likelihood of the peak 
locations  and  amplitudes  of the known-target. Shaw 
et al. (2000) considered the unknown-target rejection 
mechanism in HRR-ATR algorithm, which is 
implemented by first computing the maximum 
correlation score and next comparing the maximum 
score with the pre-determined threshold to reject the 
unknown-target. In general, the above methods reduce 
the error recognition rate of unknown-target to be 
erroneously identified as some known-target class, in 
unknown-target scenario. However these methods may 
gain low rejection rate of unknown-target when 
obtaining high discrimination rate of known-target due  
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Fig. 1: Simplified function block diagram for target recognition with unknown-targets 

 
to not establishing unknown-target model for making 
discriminating decision.  

According to signal detection theorem, the problem 
of discrimination between known-target and unknown-
target belongs to two-hypothesis detection. 
Thus, we propose a new discrimination method, namely 
log-likelihood ratio score method. The aim of this 
method is to minimize the error probability of 
discrimination by constructing the unknown target 
model when the data of unknown target is lack. We use 
Gaussian Mixture Model (GMM) to model statistical 
distribution of the known-target’ HRRP vectors. More 
importantly, we build up approximately unknown-
target model from finite known-target models in 
training database, which solves problem about 
modeling distribution of unknown-target’ HRRP 
vectors in an absence of unknown-target’ HRRP data. 
Adopting unknown-target model in discrimination will 
result in good discrimination rate of both known-target 
and unknown-target. Experiments based on measured 
data are simulated to demonstrate the effectiveness of 
our discrimination approach. 
  

METHODOLOGY 
 
Log-likelihood ratio score base discrimination for 
single known-target: Assume target Ψ is a known-
target with training data and then other targets are the 
unknown-targets with respect to target Ψ. 

Given a range profile x and a hypothesized known-
target Ψ, the goal of discrimination is to determine if x 
belongs to the known-target Ψ or not.  

 The single known-target discrimination can be 
restated as the following two-hypothesis test: 
 
 HO : x is from the hypothesized known-target Ψ 
 H1 : x is not from the  hypothesized  known-target Ψ  

or from the unknown-target 
 

Let λ and λ΄ denote the known-target model for 
hypothesis HO and the unknown-target model for the 

alternative hypothesis H1, respectively. The known-
target model λ is built up by using all the training data 
O for hypothesized known-target and unknown-target 
model λ΄ is created using the training data O΄ of all 
unknown-targets with respect to the hypothesized 
known-target. The parameters of model λ and λ΄ are 
solved by maximizing the likelihood functions P(O/λ) 
and  P(O΄/λ΄). 

 According to the Bayes decision rule for minimum 
risk, the optimal decision rule for minimizing the 
probability of error for a given range profile X is: 
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where, P(X/H0), P(X/λ) and P(X/H1), P(X/λ΄) are the 
Probability Density Function (PDF) for hypothesis HO 
and H1, respectively. � is a predefined threshold. By 
taking logarithmic form, Eq. (1) becomes:  
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We define the log-likelihood ratio score: 
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Then, from Eq. (2) and (3), we get: 
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Discrimination for multiple known-targets based on 

log-likelihood ratio score: In general, there are more 

than two known-targets in training database. Let C (>1) 

denote number of known-targets, then with respect to 

each known-target, the rest (C - 1) targets are referred 

as unknown-target. For instance, the unknown-targets 
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of i
th

 known-target include 1
th

,…, (i - 1)
th

, (i + 1)
th

,… 

C
th

 known-target. The steps of discrimination algorithm 

are listed below: 

 

• For each target in training database, the known-

target model is built up using training data.  

• Given a range profile X, according to Eq. (3), 

compute the log-likelihood ratio score for each 

known-target Si(x) (i = 1, 2,…, C), where the 

unknown-target model is determined by 

corresponding unknown-targets’ training data. 

• The threshold �����(� = 1, 2, … , )  is determined 

via statistical analysis on the log-likelihood ratio 

scores’ distribution during the training process. 

• Discrimination decision rule is given by: 

 

if ��(�) ≥ �����  for any of a i, then � ∈ known-target  

or if ��(�)<����� for all i, then � ∈ unknown-target  (5) 

 

Known-target model: An important step in the above 

discrimination is the selection of the actual likelihood 

function. The choice of this function is mainly 

dependent on the distribution of target HRRPs. We use 

Gaussian Mixture Models (GMM) to represent the 

likelihood function of known-target. There are two 

main reasons for using GMM as a representation of 

known-target HRRP’s distribution. The first reason is 

that individual component densities of GMM may 

model some underlying set of scatter centers for HRRP. 

It is well known that a HRRP may contain many 

composite scatter centers and the distribution of a 

composite scatter center’s amplitude can be represented 

by Gaussian component density. Thus, it is reasonable 

to use GMM to model the probability density function 

of target HRRP. The second reason is the empirical 

observation that a linear combination of Gaussian basis 

function is capable of representing a large class of 

sample distributions. One of the powerful ability of the 

GMM is that it can form smooth approximation to 

arbitrarily-shaped densities.  

 For a D-dimensional sample vector, x a Gaussian 

mixture density, which is used for likelihood function, 

is a weighted sum of M uni-modal Gaussian densities: 
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where, Wk, K = 1, 2,.., M  are mixture weights, 

satisfying the constraint ∑ ��
�
��� = 1 and Pk(X), K = 1, 

2,…, M, are the Gaussian densities. Each component 

density is parameterized by a � × 1 mean vector, uk   

and a � × � covariance matrix, Σ�: 
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 The complete Gaussian mixture density is 

parameterized by the mean vectors, covariance matrices 

and mixture weights from all component densities. 

Collectively, these parameters are denoted below: 

 

Mkw kkk ,,2,1},,{ L== Σuλ                         (8) 

 

 The GMM can have several different forms 

depending on the choices of covariance matrices. For 

example, there may be one covariance matrix per 

Gaussian density, one covariance matrix for all 

Gaussian densities in a known-target model, or a single 

covariance matrix shared by all known-target models. 

These covariance matrices can also be full (each entry 

may be non-zero) or diagonal (only diagonal entries are 

nonzero). However, we use only one diagonal 

covariance matrix for a known-target in this study, 

which also leads to good discrimination performance.  

Given a collection of training sample vectors, the 

GMM model parameters are estimated using the 

iteratively Expectation-Maximization (EM) algorithm, 

which can iteratively update model parameters to 

monotonically increase the likelihood of estimated 

model for observed vectors. The iterative equations of 

EM for training a GMM can be found in Reynolds 

(1992).  

 

Unknown-target model: In case of symmetrical cost 

and equal prior probabilities for the known-target and 

unknown-target model, ���� is equal to 0 and this is a 

theoretic threshold. Of course, if the statistics of all 

unknown-targets corresponding to each known-target 

can be obtained to build up the unknown-target model, 

the decision rule of (4) is optimal. However, it is 

difficult to get enough unknown-targets’ data to create 

this model due that the data of the unknown-targets is 

unknown. In general, the log-likelihood value of the 

unknown-target model is set to zero in solving Eq. (3), 

i.e., it means the unknown-target’ statistics is not used 

in discriminating. This may lead to high error 

discrimination rate for the unknown-targets. Thus, it is 

of great importance to establish the unknown-target 

model that represents the statistics of the unknown-

targets to improve the discrimination rate. In this study, 

we propose a method to approximately estimate an 

unknown-target model from finite known-target models 

in training database. 

In a C known-targets pool, for each known-target, 

we use rest (C - 1) known-target models to construct 
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corresponding unknown-target model. The operating 

steps are stated below: 

 

• Find the model of every known-target λi by 

maximizing the likelihood score P(Oi/λi), where Oi  

is training dataset for i
th

 known target 

• The unknown-target model for i
th

 known-target λ΄i 

is given by:  

 

},,,,{ )1()()1(

'

−= Csjssi λλλλ LL                            (9) 

 

�(�) ∈ [1, ] and �(�) ≠ �   

 

• This likelihood score #(�/%& �) is computed by 

following two methods 

• Mean method: In mean method, the log-likelihood 

score for an unknown-target model is the mean of 

Nm highest log-likelihood scores in model set of 

(9):  
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where, the log-likelihood scores ���#(�/%'(()) in 

(9) is arranged in descending order and )* ∈

[0,  − 1]. As Nm = 0, implicitly ���#(�/%& �)  = 0. 

• Maximum method: In the maximum method, the 

log-likelihood score for the unknown-target model 

is the maximum one among scores of model set of 

(9): 
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EXPERIMENTAL RESULTS 

 

Data description: To demonstrate the effectiveness of 

above discrimination method, several experiments are 

performed on measured data of five types of airplanes, 

i.e., A320, A319, B737, B752 and E145. The 

parameters of the targets and radar are shown in Table 1 

and 2, respectively. Training dataset for generating the 

known-target model library and test dataset for 

evaluating the discrimination performance are from two 

different collections of measurements. The measured 

HRRP is a 200-dimensional vector.  

 

Preprocessing: There are several factors affecting 

performance for HRRP based discrimination, such as 

target-aspect sensitivity, time-shift sensitivity and 

amplitude-scale    sensitivity.   Thus,   HRRP    will   be 

Table 1: Parameters of radar 

Radar parameters Center frequency Bandwidth 

 3 GHz 150 MHz 

 
Table 2: Parameters of airplanes 

Planes Length (m) Width (m) Height (m) 

A319 33.80 34.10 11.76 
A320 37.57 34.09 11.76 
B737 33.40 28.90 11.13 
B752 47.30 38.00 13.50 
E145 27.96 20.53 7.100 

 

preprocessed using following steps, to decrease the 

influence of these factors on discrimination:  

 

• Normalize each HRRP, i.e., ||X|| = 1 

• Apply Fast Fourier Transform (FFT) to each 

HRRP, to achieve shift alignment on HRRP. 

Because the amplitude of FFT is time invariant 

with shift 

• The range of target-aspect is divided into several 

sectors. The size of each sector is 5°. The variation 

of HRRPs in a sector largely decreases due to small 

aspect range, which leads to reducing target-aspect 

sensitivity 

 

GMM: 

Initialization: To investigate the relation between 

model initialization and discrimination performance, 

known-target models are built up using different 

initialization methods for a discrimination experiment.  

This experiment includes 5 class targets (A319, 

A320, B737, B752 and E145), first four class targets 

(A319, A320, B737 and B752) of which are taken as 

known-target and the rest one (E145) is taken as 

unknown-target. The known-targets are modeled using 

GMM with one diagonal covariance matrix shared by 

all mixture component densities per known-target. They 

are trained using the first collection of measured data. 

Testing is done using the 2
nd 

collection of measured 

data.  

The first initialization method applies C-Mean 

clustering algorithm to congregate the training data into 

4 subclasses automatically, which corresponds to the 

initial mixture component densities. The means and the 

average diagonal covariance matrix of all subclasses are 

served as the initial model for EM training. The second 

initialization method randomly choose 4 vectors from a 

target’ training data for the initial means of model and 

use an identity matrix for the initial covariance matrix. 

The initial value of weight Wk is 
�

-
. In unknown-target 

model,  set  Nm = 2.  The  decision  threshold  

�����(� = 1, 2, … , ) is set to 0. The results of 

discrimination are shown in Table 3. 
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Table 3: The discrimination rate based on GMM for two initialization methods (%) 

 

Target class 

C-Mean clustering initialization method 

(number of iteration is 5) 

Randomly choosing initialization method 

(number of iteration is 5) 

A319 (known target) 76 75 
A320 (known target) 87 89 
B737 (known target) 92 90 
B752 (known target)  91  86 
E145 (unknown target) 95 97 
Average discrimination rate 88 87 

 

 
 
Fig. 2: Discrimination performance as a function of the 

number of component densities per known-target 

model 

 

From Table 3, it is seen that there is no significant 

difference in discrimination performance between the 

initialization methods listed above. It is also observed 

that both methods required the same number of EM 

iterations for the convergence of likelihood function. 

These results show that optimal initialization schemes 

are no necessary for training Gaussian mixture model 

for a known-target. 

 

Model order: Regarding the discrimination 

performance based on the number of component 

densities per model, the following experiment is done 

based on 2 collections of measured airplane data. The 

GMM with 1 to 8 component Gaussian densities per 

known-target is trained. There is a diagonal covariance 

matrix  per component. In an unknown-target model, 

Nm = 2  and  Nm = 0.  The  decision threshold 

�����(� = 1,2, … , )  is set to 0. Figure 2 shows the 

average correct discrimination rates versus the number 

of Gaussian components.  

In Fig. 2, it is observed that the average 

discrimination rate is a sharp increase, when the 

number of mixture components is from 1 to 4. And 

average discrimination rate is insensitive to the number  

Table 4: The discrimination ratio using two known-target models (%) 
Target class GMM GM 

A319 (known target) 76 68 
A320 (known target) 87 73 
B737 (known target) 92 77 
B752 (known target) 91 78 
E145 (unknown target) 95 83 
Average discrimination rate 88 76 

 

of mixture components, when the number of mixture 

components is above 4. These results demonstrate that 

appropriate model order is 4 based on these measured 

dataset, which means that there is minimum model 

order to maintain good discrimination performance for 

these dataset.  

 

The known-target model: In this experiment, we 

compare performance of two known-target models-

GMM and Gaussian Model (GM). The training dataset 

and testing dataset are the same as those in previous 

experiments. Each known-target is modeled by a 4 

components GMM with one diagonal covariance matrix 

shared by all mixture components of model. The GM of 

known-target is built up by computing mean and 

covariance matrix using training dataset of 

corresponding target. Set Nm = 2 for the unknown-

target    model.    The    decision    threshold   

�����(� = 1,2, … , )  is set to 0. The results are shown 

in Table 4.   
It is observed from these results, the average 

discrimination ratio of GM is 12% lower than that of 
GMM. The reason is that GM only uses one Gaussian 
component to describe the distribution of target HRRPs, 
but real distribution of HRRPs is too complicate to 
represent only using a Gaussian component. Thus, the 
GMM is suitable to approximate the distribution of 
target HRRPs. And hence, only GMM is used to model 
known-target in later experiments.  
 

Two computation method for likelihood of 

unknown-target model: In this experiment, we 

compare the performance of the mean method and 

maximum method for likelihood score computation of 

unknown-target model. The training data and testing 

data used in this experiment are the same as those in the 

previous experiment. The number of the highest log-

likelihood scores to be averaged, denoted as Nm, varies 
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Table 5: The discrimination rate for two computation method of likelihood for unknown-target (%) 

Target class Mean method (Nm = 0) 
Mean method (Nm = 1) 
(Max. method) Mean method (Nm = 2) Mean method (Nm = 3) 

A319 (known target) 71 73 76 74 
A320 (known target) 76 83 87 86 
B737 (known target) 80 86 92 88 
B752 (known target) 81 84 91 89 
E145 (unknown target) 85 88 95 92 
Average discrimination rate 79 83 88 86 

 

from 0 to number of models in Eq. (9). For Nm = 0, it 

means that log-likelihood of the unknown-target model 

is zero. The maximum method is given by Nm = 1.  

The results are shown in Table 5. Some 

conclusions can be drawn from this table: 

 

• At Nm = 0, the correct discrimination ratio is the 

lowest. This is because that no unknown-target 

model is used in computing likelihood ratio scores. 

• At Nm = 1, i.e., maximum method, the 

discrimination performance is not optimal. The 

reason is that only one known-target model with 

highest likelihood scores is used in computing the 

likelihood ratio scores. 

• For this case, the best result is obtained by setting 

Nm = 2. 

 

Performance comparison for different 

discrimination methods:  We also use Confidence 

Measure based Unknown-Target Rejection (CMUTR) 

method (Mitchell and Westerkamp, 1999) and 

Maximum Correlation Score Threshold based 

Discrimination (MCSTD) method (Shaw et al., 2000) 

to demonstrate effectiveness of the Log-Likelihood 

Ratio Score based Discrimination (LLRSD) method 

proposed in this study. In log-likelihood ratio score 

based method, GMM is used to model known-targets 

and the likelihood of unknown-target model is 

computed using Mean method (Nm = 2). The decision 

threshold �����(� = 1,2, … , )  is set to 0. The 

experimental data is the same as described above. The 

experiments, in which the Gaussian white noise is 

added to HRRPs of targets, are simulated for different 

SNR. The average discrimination rates of three methods 

versus SNR are shown in Fig. 3.  

It is obvious that with SNR between 5 and 10 dB, 

the performance of these methods is sensitive to noise. 

With SNR (above 15 dB), the average discrimination 

rates of LLRSD is higher than those of CMUTR and 

MCSTD. The reason is that LLRSD method which 

utilizes unknown-target model to approximately 

represent distribution of unknown-target’ HRRPs, but 

CMUTR method and MCSTD method only applies the 

known-target model.  

 
 

Fig. 3: The average discrimination rates of LLRSD, CMUTR 

and MCSTD versus SNR 

 

CONCLUSION 
 

 This study has proposed the log-likelihood ratio 
score method for known-target and unknown-target 
discrimination using HRRP. It is derived from the 
theorem of Bayes test for minimum risk. The GMM and 
unknown-target model are applied to represent the 
target HRRP’s distribution and unknown-target 
HRRP‘s distribution, respectively. The experiments on 
measured dataset show that: 

 

• There appears to be an appropriate model order for 
GMM to model known-targets, due to low 
computation amount and good discrimination 
performance 

• For known-target, GMM outperforms the GM 

• The mean method to compute the likelihood score 
of unknown-target model is superior to the 
maximum method if appropriately choosing the 
averaged number of the highest log-likelihood 
scores 

• With SNR (above 15 dB), the average 
discrimination rate of the method proposed in this 
study is higher than that of CMUTR (Mitchell and 
Westerkamp, 1999) and MCSTD (Shaw et al., 
2000), which demonstrates the effectiveness of the 
proposed method 
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