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Abstract: We study a steady hydromagnetic Couette flow of a viscous incompressible electrically conducting fluid 
in a rotating system between two infinitely long parallel plates in the presence of a uniform transverse magnetic field 
on taking Hall Current into account. The governing equations describing the flow are solved analytically. It is 
observed that the Hall currents accelerate the primary velocity whereas they retard the secondary velocity. The 
induced magnetic field is significantly affected by the Hall currents. An increase in Hall currents leads to fall in the 
fluid temperature. The heat transfer characteristics have also been studied. The rate of heat transfer at the lower plate 
decreases whereas the rate of heat transfer at the upper plate increases with an increase in Hall parameter. The 
asymptotic behavior of the solutions are discussed for small and large values of magnetic parameter and rotation 
parameter. It is interesting to note that either for strong magnetic field or for large rotation there exists a single-deck 
boundary layer in the region near the stationary plate. The thickness of this boundary layer first decreases, reaches a 
minimum and then increases with an increase in Hall parameter. 
 
Keywords: Couette flow, eckert number, hall currents, heat transfer, MHD, rotation parameter, steady flow 

 
INTRODUCTION 

 
Couette flows find widespread applications in 

geophysics, planetary sciences and also in many areas 
of industrial engineering. For many decades engineers 
have studied such flows with and without rotation and 
also for both the steady and unsteady cases. In the 
ionized gases, the current is not proportional to the 
applied potential except when the electric field is very 
weak. However, in the presence of strong electric field, 
the electrical conductivity is affected by the magnetic 
field. Consequently, the conductivity parallel to the 
electric field is reduced. Hence, the current is induced 
in the direction normal to both the electric and magnetic 
fields. This phenomenon well known in literature is 
known as the Hall effects. Due to these Hall Currents 
the electrical conductivity of the fluid becomes 
anisotropic and this causes secondary flow in 
magnetohydrodynamic primary flows. Hall Currents are 
of great importance in many astrophysical problems, 
Hall accelerator and flight MHD as well as flows of 
plasma in a MHD power generator. The study of the 
interaction of the Coriolis force with the 
electromagnetic force is also important. In particular, 
rotating MHD flows with heat transfer is one of the 
important current topics because of its applications in 
thermofluid transport modeling in magnetic geosystems 
and in some astrophysical problems. Hartmann and 
Lazarus (1937) have investigated the influence of a 

transverse uniform magnetic field on the flow of a 
viscous incompressible electrically conducting fluid 
between two infinite parallel stationary and insulating 
plates. The problem is extended in numerous ways. 
Closed form solutions for the velocity fields have been 
obtained by Tao (1960), Alpher (1961), Sutton and 
Sherman (1965) and Cramer and Pai (1973) under 
different physical effects. In the above mentioned cases 
the Hall term was ignored in applying Ohm's law as it 
has no marked effect for small and moderate values of 
the magnetic field. However, the current trend for the 
application of magnetohydrodynamics is towards a 
strong magnetic field so that the influence of 
electromagnetic force is noticeable. Under these 
conditions, the Hall Currents are important and they 
have a significant effect on the magnitude and direction 
of the current density and consequently on the magnetic 
force. Hall effects on hydromagnetic Couette flow and 
heat transfer have been studied by Gupta (1972). 
Soundalgekar et al. (1974) have obtained the Hall 
effects on generalized MHD Couette flow with heat 
transfer. MHD Couette flow and heat transfer in a 
rotating system have been studied by Jana et al. (1977). 
Seth  and  Maiti (1982), Mandal et al. (1982) and Seth 
et al. (1982, 1985, 2009) have studied MHD Couette 
flow of a rotating system in the presence of a uniform 
transverse magnetic field considering different aspects 
of the problem. Ghosh (2002) has studied the effects of 
Hall current on MHD Couette flow in a rotating system 
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with arbitrary magnetic field. Das et al. (2008) have 
investigated Couette flow in a viscous incompressible 
fluid in a rotating system in the absence of magnetic 
field. Seth et al. (2009) have discussed MHD Couette 
flow of a viscous incompressible electrically 
conducting fluid in the presence of a uniform magnetic 
field neglecting induced magnetic field. Hall effects on 
MHD Couette flow between two infinite horizontal 
parallel porous plates in a rotating system under the 
boundary layer approximations have been studied by 
Das et al. (2011). Seth et al. (2011) have obtained 
steady MHD Couette flow of a viscous incompressible 
electrically conducting fluid in a rotating system. 

In the present study, we have studied the effects of 
Hall Current and rotation on the MHD Couette flow of 
a viscous incompressible electrically conducting fluid 
in a rotating system in the presence of a uniform 
transverse magnetic field on taking induced magnetic 
field into account. The lower plate is perfectly 
conducting whereas the upper plate is non-conducting. 
The upper plate is moving with a constant velocity U0  
while the lower plate is kept stationary. It is found that 
both the primary velocity u1 and the secondary velocity 
v1 decrease with an increase in magnetic parameter M2. 
It is also found that both the velocities increase with an 
increase in rotation parameter K2. It is seen that the 
primary velocity u1 increases whereas the secondary 
velocity v1 decreases with an increase in Hall parameter 
m. It is observed that both the primary and secondary 
induced magnetic field components bx and by decrease 
with an increase in magnetic parameter M2 whereas 
they increase with an increase in rotation parameter K2. 
It is also seen that the primary induced magnetic field 
component bx decreases while the secondary induced 
magnetic field component by increases with an increase 
in Hall parameter m. It is found that the shear stress at 
the lower plate due to the primary flow increases while 
the shear stress at the lower plate due to the secondary 
flow decreases with an increase in Hall parameter. The 
heat transfer characteristics have also been studied on 
taking viscous and Joule dissipations into account. The 
rate of heat transfer at the lower plate decreases while 
the rate of heat transfer at the upper plate increases with 
an increase in Hall parameter. 
 
Formulation of the problem and its solutions: The 
basic equations of magnetohydrodynamics for steady 
flow are: 
  

 
( ) 21 1ˆ2 ,q q k q p q j Bν

ρ ρ
⋅∇ + Ω × = − ∇ + ∇ + ×

rrr r r r

      
(1) 

  
0,q∇ ⋅ =

r
                  (2) 

 
,eB jµ∇× =

r r

                  (3) 
 

0 (for steady flow ),E∇ × =
r

                             (4) 

 0B∇ ⋅ =
r

                  (5) 
 
together with generalized Ohm's law taking Hall current 
into account is (Cowling, 1957): 
 

 
( ) ( )

0

,e ej j B E q B
B
ω τ

σ+ × = + ×
r r rr r r

                     (6)
 

 
where, , , , , Ω are respectively the velocity vector, 
the magnetic field vector, the electric field vector, the 
current density vector and angular velocity. Also , v, 

, ρ , p, B0,  and  are the electric conductivity, 
kinematic coefficient of viscosity, magnetic 
permeability, fluid density, modified fluid pressure 
including centrifugal force, applied magnetic field, 
cyclotron frequency and electron collision time 
respectively. In writing the Eq. (6), the ion-slip and the 
thermoelectric effects as well as the electron pressure 
gradient are neglected. 

Consider the viscous incompressible electrically 
conducting fluid bounded by two infinite horizontal 
parallel plates separated by a distance d. Choose a 
Cartesian co-ordinates system with x -axis along the 
lower stationary plate in the direction of the flow, the z-
axis is normal to the plates and the y-axis is 
perpendicular to xz-plane (Fig. 1). The lower plate is 
perfectly conducting whereas the upper plate is non-
conducting. The upper plate is moving with a uniform 
velocity U0 while the lower plate is held at rest. The 
plate and the fluid rotate in unison with uniform angular 
velocity Ω about an axis perpendicular to the plates. A 
uniform magnetic field B0 is applied in the positive z-
direction. Since the plates are infinitely long, all 
physical variables, except pressure, depend on z only. 

The equation of continuity ·   = 0 with no-slip 
condition at the plates gives w = 0 everywhere in the 
flow where    (u, v, w). The solenoidal relation 

 ·   = 0 gives Bz = constant = B0 everywhere in the 
flow where   (Bx , By , B0 ). 
 

The momentum equations for the fully developed 
steady flow are: 
 

2
0

2

12 ,x

e

B dBp d uv
x dzdz

ν
ρ ρµ
∂

− Ω = − + +
∂                     (7) 

 
2

0
2

12 ,y

e

dBBp d vu
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ν
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∂
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Fig. 1: Geometry of the problem  
 

Eliminating  from Eq. (4) and (6), we have the x- 
and y-components of the magnetic induction equations 
as: 
 

22

02 2 0,yx
e

d Bd B dum B
dzdz dz

σµ+ + =
                  (10) 

 

 

2 2

02 2 0,y x
e

d B d B dvm B
dzdz dz

σµ− + =
                   (11)

 

 
where m =     is the Hall parameter. 

The boundary conditions for the velocities and the 
magnetic fields are: 
 

 
0, 0, 0, at 0;yx

dBdB
u v z

dz dz
= = = = =

 
 

 0 , 0, 0, 0, at .x yu U v B B z d= = = = =          (12) 
 

On the use of the boundary condition at z = d, we 
have from Eq. (7) and (8): 
 

 
0

1 10 and 2 .p p U
x yρ ρ
∂ ∂

− = − = Ω
∂ ∂

                     (13) 

 
Using (13), Eq. (7) and (8) become:  
 

 

2
0

22 ,x

e

B dBd uv
dzdz

ν
ρµ

− Ω = +                               (14) 

 

 

2
0

0 22 ( ) .y

e

dBBd vu U
dzdz

ν
ρµ

Ω − = +
                      

(15) 

 
Introducing the non-dimensional variables: 

 
 

1 1
0 0 0

( , )( , ), ( , ) , ( , ) ,x y
x y

e

B Bz u vu v b b
d U B U d

η
σµ

= = =            (16) 

 
Equations (14), (15), (10) and (11) become: 
 

 

2
2 21

1 22 ,xdbd u
K v M

dd ηη
− = +                                 (17) 

 

 

2
2 21

1 22 ( 1) ,ydbd v
K u M

dd ηη
− = +

                            
(18) 

 

 

22
1

2 2 0,yx d bd b du
m

dd d ηη η
+ + =

                                  
(19) 

 

 

2 2
1

2 2 0,y x
d b d b dv

m
dd d ηη η

− + =
                                 

 (20) 

 
where, 2 2

2 0B d
M

σ
ρν

=  is the magnetic parameter and 

2
2 dK

ν
Ω

=  the rotation parameter. Combining Eq. (17), 

(18), (19) and (20), we get: 
 

 

2
2 2

2 2 ( 1),d F dbM iK F
dd ηη

+ = −
                         

 (21) 

 

 

2

2(1 ) 0,d b dFim
dd ηη

− + =
                                    

    (22) 

 
 where, 
  

1 1, and 1.x yF u iv b b ib i= + = + = −              (23) 
 

The corresponding boundary conditions for F(η) 
and b(η) are: 
 

0 at 0 and 1 at 1,F Fη η= = = =  
 

0 at 0 and 0 at 1.db b
d

η η
η
= = = =

                (24) 
 
The solutions of the Eq. (21) and (22) subject to the 

boundary conditions (24) are: 
 
 

1
sinh sinh (1 ) sinh( ) 1 ,
sinh sinh sinh

F cλη λ η ληη
λ λ λ

−⎡ ⎤= + + −⎢ ⎥⎣ ⎦   
(25) 
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(1
1 cosh cosh( ) 1

(1 ) sinh
b c

im
λ ληη η
λ λ
−⎡= + −⎢− ⎣   

 
cosh cosh cosh (1 ) 1 .

sinh sinh
λ λη λ η
λ λ λ λ
− − − ⎤⎞+ + ⎟⎥⎠⎦     

           (26) 

 
 where, 
 

 

2

1 2

2, ,iKi cλ α β
λ

= + = −
   

 
1
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2
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⎡
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⎣

1
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2 .
1

M
m
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± ⎥⎜ ⎟+⎝ ⎠⎦   

(27)
 

 
On separating into real and imaginary parts one can 

easily obtain the velocity components u1 and v1 from 
Eq. (25) and the induced magnetic field components bx 
and by from Eq. (26). If m = 0, then the Eq. (25) and 
(26)  are  identical  with  the Eq. (23) and (24) of Seth 
et al. (2011). 

 
RESULTS AND DISCUSSION 

 
We have plotted the non-dimensional primary and 

secondary velocities u1 and v1 against η for several 
values of magnetic parameter M2, rotation parameter K2 
and Hall parameter m in Fig. 2 to 4. Figure 2 displays 
that both the primary velocity u1 and the secondary 
velocity v1 decrease with an increase in magnetic 
parameter M2 which implies that magnetic field has 
retarding influence on both the primary and the 
secondary flow. Figure 3 shows that the primary 
velocity u1 increases with an increase in rotation 
parameter K2 whereas the secondary velocity v1 
increases in the vicinity of the lower plate and 
decreases away from the lower plate with an increase in 
rotation parameter K2. The rotation parameter K2 
defines the relative magnitude of the Coriolis force and 
the viscous force in the regime, therefore it is clear that 
the high magnitude Coriolis forces are counter-
productive for the primary flow. It is observed from 
Fig. 4 that the primary velocity u1 increases whereas the 
secondary velocity v1 decreases with an increase in Hall 
parameter m. This implies that Hall currents accelerate 
the primary flow and retard the secondary flow. Also 
we have presented the non-dimensional primary and 
secondary induced magnetic field components bx and by 
against η for several values of  magnetic parameter M2, 
rotation  parameter  K2 and Hall parameter m in Fig. 5 
to  7.  It  is  revealed  from  Fig. 5  that both the induced 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2: Primary and secondary velocities for M2 when m = 0.5 

and K2 = 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Primary and secondary velocities for K2 when M2 = 

10 and m = 0.5  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Primary and secondary velocities for m when M2 = 10 

and K2 = 5  
 
magnetic field components bx and by decrease with an 
increase in magnetic parameter M2 which means that 
magnetic field has a trendeny to reduce the primary and 
the secondary induced magnetic fields in the presence 
of Hall Currents. It is seen from Fig. 6 that both the 
primary  and   the  secondary   induced   magnetic  field 
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Fig. 5: Primary and secondary induced magnetic fields for M2 

when m = 0.5 and K2 = 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Primary and secondary induced magnetic fields for K2 

when M2 = 10 and m = 0.5  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Primary and secondary induced magnetic fields for m 

when M2 = 10 and K2 = 5 
 
components bx and by increases with an increase in 
rotation parameter K2. It indicates that rotation tends to 
enhance both the primary and the secondary induced 
magnetic field components. Figure 7 reveals that with 
an increase in Hall parameter m the induced magnetic 

field component bx decreases whereas by increases 
which means that Hall Currents tend to reduce the 
primary induced magnetic field component bx whereas 
Hall Currents tend to enhance the secondary induced 
magnetic field component by.  

The non-dimensional shear stresses due to the 
primary and  the  secondary  flows at the  lower  plate 
(η = 0) and the upper plate (η = 1) are, respectively: 

 
2

0 0
0

1
sinh 1x y

dF Mi
d imη

τ τ
η λ λ=

⎡⎛ ⎞
+ = =⎜ ⎟ ⎢ −⎝ ⎠ ⎣  

 
22 cosh ,iK λ ⎤+ ⎦                                                   (28) 

 
2

1 1
1

1 cosh
sinh 1x y

dF Mi
d imη

τ τ λ
η λ λ=

⎡⎛ ⎞
+ = =⎜ ⎟ ⎢ −⎝ ⎠ ⎣

22 ,iK ⎤+ ⎦   (29) 
 

where λ is given by (27). 
Numerical results of the shear stresses at the plates 

(η = 0) and (η = 1) are depicted in Fig. 8 to 11 against 
m  for various values of magnetic parameter M2 and 
rotation parameter K2. Figure 8 shows that at the lower 
plate (η = 0) both the shear stress τ  due to the primary 
flow and the shear stress τ  due to the secondary flow 
decrease with an increase in magnetic parameter M2. 
This implies that the magnetic field has tendency to 
reduce the primary shear stress as well as the secondary 
shear stress at the lower plate. It is seen from Fig. 9 that 
at the lower plate (η = 0) both the shear stresses τ  and 
τ  increase with an increase in rotation parameter K2. 
This means that rotation has tendency to enhance the 
primary as well as the secondary shear stresses at the 
lower plate. Further, it is observed from Fig. 10 that at 
the upper plate (η = 1) both the shear stress τ  due to 
the primary flow and the shear stress τ  due to the 
secondary flow increase with an increase in magnetic 
parameter M2 which implies that the magnetic field has 
tendency to enhance the primary shear stress as well as 
the secondary shear stress at the upper plate. It is seen 
from Fig. 11 that at the upper plate (η = 1) both the 
shear stresses τ  and τ  decrease with an increase in 
rotation parameter K2 which implies that rotation has 
tendency to reduce the primary as well as the secondary 
shear stresses at the upper plate. Further it is observed 
from Fig. 8 and 9 that τ  increases and τ  decreases 
with an increase in Hall parameter m. Figure 10 and 11 
show that τ  decreases and τ  increases with an 
increase in Hall parameter m. Thus, Hall currents have 
tendency to enhance the primary shear stress and to 
reduce the secondary shear stress at the lower plate 
whereas  Hall  currents  have  tendency  to   reduce   the  
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Fig. 8: Shear stresses  and  for M2 when K2 = 5  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9: Shear stresses  and  for K2 when M2 = 10  
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 10: Shear stresses  and  for M2 when K2 = 5  
 
primary shear stress and to enhance the secondary shear 
stress at the upper plate.  

We shall now discuss the asymptotic behavior of 
the solutions (25) and (26) for small and large values of 
M2 and K2: 
 
Case I: When M2<<1 and K2<<1. In this case, the Eq. 
(21) and (22) become:  

 
 
 
 
 
 
 
 
 
 
 

Fig. 11: Shear stresses  and  for K2 when M2 = 10 
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      (30) 
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K mMv
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2 241 1x
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2
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2
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2
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     (33) 

 
It is observed from Eq. (30) to (33) that for small 

values of K2 and M2, the primary velocity is 
independent of the rotation parameter K2 but depend on 
magnetic parameter and Hall parameter. On the other 
hand, secondary velocity, primary and secondary 
induced magnetic field components depend on the 
rotation parameter as well as magnetic parameter and 
Hall parameter. 
 
Case II: When K2>>1 and M2 ≈ O (1). For the 
boundary layer flow adjacent to the upper plate η = 1, 
we introduce ξ = 1 - η and then the Eq. (21) and (22) 
give: 
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1

1 1 12 2 1 (cos sin ) ,
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Mv e m
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α ξ β ξ β ξ−⎡ ⎤= − +⎣ ⎦+  
(35)

  
 

[
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mM Mb m
m K m K m
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{ }1
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1 1 2 2

(1 ), 1 .
4 (1 )

m MK
K m

α β
⎡ ⎤±

= ±⎢ ⎥+⎣ ⎦             
 (38) 

 
It is seen from the Eq. (34) and (35) that there 

exists a single-deck boundary layer of thickness of the 
order О(1/α1) where α1 is given by (38). It is observed 
that the thickness of this boundary layer decreases with 
an increase in magnetic parameter M2. Figure 12 shows 
that the boundary layer thickness first decreases, 
reaches a minimum and then increases with an increase 
in Hall parameter m while the thickness of this 
boundary layer has oscillatory in nature with an 
increase in rotation parameter K2.  

It is seen that the exponential terms in (34) to (37) 
damp out quickly as ξ increases. When ξ≥1/α1 i.e., 
outside the boundary layer region, the velocities and 
induced magnetic field components become: 
 

2 2

1 12 2 2 21 , ,
2 (1 ) 2 (1 )

mM Mu v
K m K m

= − =
+ +

            (39) 

 
2 2

2 2 2 3 2 21 (1 2 ),
1 (1 ) 4 (1 )x

mM Mb m
m K m K m
ξ ⎡ ⎤

= − − −⎢ ⎥+ + +⎣ ⎦
 

 
2 2

2 2 2 3 2 2 (1 2 ).
2 (1 ) 4 (1 )y
M Mb m
K m K m

ξ
= − +

+ +
      (40) 

 
Case III: When M2>>1 and K2 ≈ O (1). In this case, the 
Eq. (21) and (22) give: 
 

2 2
22

1 22 2

2 31 cos
4

mK mKu e m
M M

α ξ β ξ− ⎡⎛ ⎞
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⎝ ⎠⎣
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12: Boundary layer thickness when M2 = 10 
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(44) 

 
 where, 
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2
2 22 2

, 1 .
1 2 1

M K mMm
Mm m

α β
⎛ ⎞
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(45) 

 
It is seen from the Eq. (41) and (42) that there 

exists a single-deck boundary layer of thickness of the 
order О(1/α2) where α2 is given by (45). It is revealed 
that the thickness of this boundary layer increases with 
increase in Hall parameter m but it decreases with an 
increase in magnetic parameter M2. It is interesting to 
note that for large magnetic parameter, that is, for 
strong magnetic field the boundary layer thickness is 
independent of rotation parameter K2. 

It is seen that the exponential terms in (41) to (44) 
damp out quickly as ξ increases. When ξ≥1/α2 i.e., 
outside the boundary layer region, the velocities and 
induced magnetic field components reduce to: 
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2 2

1 12 2

2 2, ,mK Ku v
M M

= =                                         (46) 

 
2

2
2 2

22 2

1 311 2 22 , .
1 1

x y

Kmm K Mb b
MM m M m

ξ −+
= = +

+ +
               (47) 

 
Heat transfer: The energy equation for the fully 
developed flow including the viscous and Joule 
dissipations is:  
 

2 22
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µ
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dBdB
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(48) 

 
where,  
k : The thermal conductivity  
µ : The dynamic viscosity 
 
The temperature boundary conditions are: 
 

0 1at 0, at ,T T z T T z d= = = =                (49) 
 
where, T0 and T1(T1 T0) denote the uniform 
temperature of the plates at z = 0 and z = d respectively. 
Introducing:  
 

0

1 0

,
T T
T T

θ
−

=
−

                             (50) 

 
and on the use of (16) and (23), the energy Eq. (48) can 
be written in a dimensionless form as:  
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                          (51) 

 
where, Pr   is the Prandtl number,   

the Eckert number and CP the specific heat at constant 
pressure . 

The corresponding temperature boundary 
conditions for θ(η) become: 
  

 (0) 0 and (1) 1.θ θ= =                                       (52) 

Using Eq. (25) and (26), the solution of Eq. (51) 
subject to the boundary conditions (52) is: 
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Fig. 13: Temperature   variations  for  M2  when  m  =  0.2,  

K2 = 20 , Pr = 3.0 and Ec = 0.01  
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 14: Temperature   variations  for  K2  when  m  =  0.2,  
M2 = 10, Pr = 3.0 and Ec = 0.01  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 15: Temperature   variations  for  m  when  M2  =  10,  

K2 = 10, Pr = 4.0 and Ec = 0.01  

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16: Temperature  variations  for  Ec  when  M2  =  10,   

K2 = 10, m = 0.2 and Pr = 3.0  
 
The effects of magnetic parameter M2, rotation 

parameter K2, Hall parameter m and Eckert number Ec 
on  the temperature distribution have been shown in 
Fig. 13 to 16. It is seen from Fig. 13 to 14 that the fluid 
temperature θ(η) increases with an increase in either 
magnetic  parameter M2 or rotation parameter K2. 
Figure 15 shows that the fluid temperature θ(η) 
decreases with an increase in Hall parameter m. It is 
observed from Fig. 16 that increasing values of Eckert 
number Ec is to increase the fluid temperature 
distribution in flow region. This is due to the heat 
energy stored in the liquid because of the frictional 
heating. 

The  rate  of  heat  transfer  at  the plates η = 0 and 
η = 1 can be obtained from (53) as: 
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Table 1: Rate of heat transfer at the lower and upper plates when K2 = 5, Pr = 0.71 and Ec = 0.01 

  
′ 0  

------------------------------------------------------------------------------ 
′ 1  

----------------------------------------------------------------------------- 
m\M2 10  15  20 25  10 15 20 25 
0.2 
0.4 
0.6 
0.8 

1.011970  
1.011080  
1.010399  
1.009902  

1.011215 
1.010369 
1.009715 
1.009223 

1.010493  
1.009733  
1.009137  
1.008680  

1.009858  
1.009186  
1.008651  
1.008234  

0.978506  
0.980675  
0.982944  
0.985082  

0.973344 
0.975860 
0.978539 
0.981109 

0.969174 
0.971880 
0.974826 
0.977694 

0.965590 
0.968422 
0.971560 
0.974661 

0
0.1
0.2

0.4
0.5
0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
η

θ

0.3

0.8
0.9
1.0

0.7

M  = 5, 15, 252

0
0.1
0.2

0.4
0.5
0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
η

θ

0.3

0.8
0.9
1.0

0.7

K  = 4, 9, 25
22

0
0.1
0.2

0.4
0.5
0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
η

θ

0.3

0.8
0.9
1.0

0.7 m = 0.1, 0.5, 1.0

0
0.1
0.2

0.4
0.5
0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
η

θ

0.3

0.8
0.9
1.0

0.7

Ec = 0.003, 0.007, 0.01
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Table 2: Rate of heat transfer at the lower and upper plates when M2 = 10, Pr = 0.71 and Ec = 0.01  

  
0

 ------------------------------------------------------------------------------
 1

 ----------------------------------------------------------------------------
 

m\K2 4 8 12 16 4 8 12 16 
0.2 
0.4 
0.6 
0.8 

1.009308 
1.008680 
1.008198 
1.007847 

1.020377 
1.018611 
1.017235 
1.016211 

1.030215 
1.027489 
1.025287 
1.023605 

1.037911 
1.034599 
1.031823 
1.029656 

0.979537 
0.981446 
0.983505 
0.985481 

0.975244 
0.978118 
0.980982 
0.983581 

0.971689 
0.975219 
0.978672 
0.981762 

0.969309 
0.973169 
0.977009 
0.980450 

 
Table 3: Rate of heat transfer at the lower and upper plates when K2 = 5, Pr = 0.71 and M2 = 10   

 
′ 0

 ------------------------------------------------------------------------------
 

′ 1
 -----------------------------------------------------------------------------

 

m\Ec 0.003 0.005 0.007 0.01 0.003 0.005 0.007 0.01 
0.2 
0.4 
0.6 
0.8 

1.003591 
1.003324 
1.003120 
1.002971 

1.005985 
1.005540 
1.005200 
1.004951 

1.008379 
1.007756 
1.007279 
1.006931 

1.011970 
1.011080 
1.010399 
1.009902 

0.993552 
0.994202 
0.994883 
0.995525 

0.989253 
0.990337 
0.991472 
0.992541 

0.984954 
0.986472 
0.988061 
0.989558 

0.978506 
0.980675 
0.982944 
0.985082 

 

( )cosh 2
4
P AB BA α
α

+ +
 

 
sinh sinh( )cos 2

4
iQ BA AB RBB λ λβ
β λ λ

⎛ ⎞
− − − +⎜ ⎟

⎝ ⎠  
 

cosh cosh .AB BAR RBBλ λ
λ λ

⎤⎛ ⎞
− + + ⎥⎜ ⎟

⎝ ⎠ ⎦           
     (56) 

 
where λ is given by (27), A, , B, , P, Q, R, X and Y 
are given by (54). 

The numerical values of the rate of heat transfer θ  
(0) and θ  (1) are entered in the Tables 1 to 3 for 
different values of magnetic parameter M2, rotation 
parameter K2, Eckert number Ec and Hall parameter m. 
It is seen from Table 1 that the rate of heat transfer 
decreases both at the lower plate and the upper plate 
with an increase in magnetic parameter M2 for fixed 
value of Hall parameter m. It is observed from Table 2 
and 3 that the rate of heat transfer increases at the lower 
plate (η = 0) while it decreases at the upper plate (η = 1) 
with an increase in either rotation parameter K2 or 
Eckert number Ec for fixed value of Hall parameter m. 
Further, it is observed from Table 1 to 3 that the rate of 
heat transfer decreases at the lower plate whereas it 
increases at the upper plate with an increase in Hall 
parameter m for fixed values of magnetic parameter 
M2, rotation parameter K2 and Eckert number Ec. 

Critical Eckert number at the lower plate η = 0 and 
at  the  upper  plate  η = 1  can  be obtained from the 
Eq. (55) and (56) as:  
 

( ) 1
0

( )
4
PEc Pr X Y AB BA

η α
−

=

⎡= − + +⎢⎣  

1

( ) ,
4
iQ AB BABA AB R
β λ λ

−
⎤⎛ ⎞

− − − + ⎥⎜ ⎟
⎝ ⎠⎦          

          (57) 

 

( ) 1 ( ) sinh 2
4
PEc Pr X Y AA BB

η
α

α=

⎡ ⎧= − + +⎨⎢ ⎩⎣  
 

( )sin 2 ( )cosh 2
4 4
Q PAA BB AB BAβ α
β α

+ − + +
 

sinh sinh( ) cos 2
4
iQ BA AB RBB λ λβ
β λ λ

⎛ ⎞
− − − +⎜ ⎟

⎝ ⎠   
 

1

cosh cosh .AB BAR RBBλ λ
λ λ

−
⎤⎫⎛ ⎞ ⎪− + + ⎥⎬⎜ ⎟
⎪⎥⎝ ⎠ ⎭⎦  

           (58) 

 
where λ is given by (27), A, , B, , P, Q, R, X  and Y 
are given by (54). 

The numerical values of the Critical Eckert number 
(Ec)η-o and (Ec)η-1  for several values of M2, K2 and m 
are shown in Table 4 and 5 respectively. It is observed 
from Table 4 that the absolute value of the Critical 
Eckert number at the lower plate η = 0 increases while 
the Critical Eckert number at the upper plate η = 1 
decreases on increasing magnetic parameter M2 for 
fixed  values  of  Hall parameter m. It is seen from 
Table 5 that the absolute value of the Critical Eckert 
number at the lower plate decreases and the Critical 
Eckert number at the upper plate also decreases with an 
increase in rotation parameter K2 for fixed values of 
Hall parameter m. Further Table 4 and 5 show that the 
absolute value of the Critical Eckert number at the 
lower and the upper plates increases with an increase  in
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Table 4: Critical eckert number at the lower and upper plates when K2 = 10 and Pr = 3  

  
- (Ec)η = 0 
--------------------------------------------------------------------------------

 (Ec)η = 1 
-------------------------------------------------------------------------

 

m\M2 10 15 20 25 10 15 20 25 
0.4 
0.6 
0.8 
1.0 

0.101650 
0.110266 
0.117798 
0.124006 

0.102098 
0.111619 
0.120054 
0.127167 

0.104869 
0.114799 
0.123664 
0.131254 

0.108837 
0.118956 
0.128025 
0.135858 

0.100929 
0.116870 
0.136070 
0.158140 

0.080416 
0.092775 
0.107653 
0.124825 

0.069496 
0.079662 
0.091894 
0.106070 

0.062548 
0.071250 
0.081760 
0.093836 

 
Table 5: Critical eckert number at the lower and upper plates when M2 = 10 and Pr = 3  

  
- (Ec)η = 0 
-----------------------------------------------------------------------

 (Ec)η = 1 
-------------------------------------------------------------------------

 

m\K2 4 8 12 16 4 8 12 16 
0.4 
0.6 
0.8 
1.0 

0.272672 
0.288681 
0.301601 
0.311266 

0.127168 
0.137317 
0.145994 
0.152978 

0.086096 
0.093592 
0.100260 
0.105845 

0.068403 
0.074371 
0.079804 
0.084457 

0.127554 
0.143481 
0.163008 
0.185559 

0.108155 
0.124447 
0.144139 
0.166752 

0.095505 
0.110965 
0.129766 
0.151275 

0.088206 
0.102938 
0.121058 
0.141446 

 
Hall parameter m for fixed values of magnetic 

parameter M2 and rotation parameter K2. It follows 
from (55) that heat will flow from the lower plate to the 
fluid if Ec  (Ec)η-o, while heat will start flowing from 
the fluid to the lower plate if Ec  (Ec)η-o. Conversely, it 
follows from (56) that heat will flow from the fluid to 
the upper plate if Ec  (Ec)η=1, while heat will start 
flowing from upper plate to fluid if Ec  (Ec)η=1. When 
Eckert number Ec becomes Critical Eckert number then 
there is no flow of heat either from fluid to the plates or 
that from plates to fluid.  

This reversal of heat flow may be explained on 
physical grounds. It is observed that in case there is 
significant viscous dissipation near the plate, the 
temperature of the fluid near the plate may exceed plate 
temperature and for this reason heat will flow from the 
fluid to the plate even if plate temperature is higher than 
the ambient temperature. It is noted that in our heat 
transfer analysis Eq. (48) we have considered the 
effects of both viscous dissipation and Joule dissipation 
into account and hence there is a strong reason for the 
flow of heat from the fluid to the plates under certain 
conditions. 

 
CONCLUSION 

 
Hall effects on MHD Couette flow between infinite 

horizontal parallel plates in a rotating system under 
boundary layer approximation have been studied. The 
magnetic field has retarding influence on the velocity 
field as well as the induced magnetic field. Rotation has 
accelerating influence on the velocity field as well as 
the induced magnetic field. Hall parameter m  tends to 
accelerate the primary fluid flow and to decelerate the 
secondary flow. On the other hand, it has retarding 
influence on primary magnetic field and accelerating 
influence on secondary magnetic field. The fluid 
temperature increases with an increase in either 
magnetic parameter M2 or rotation parameter K2 or 
Eckert number Ec while it decreases on increasing Hall 

parameter m. In the lower plate the primary and the 
secondary shear stresses decrease with an increase in 
M2 whereas they increase on increasing K2. Further, the 
rate of heat transfer at the lower plate decreases 
whereas the rate of heat transfer at the upper plate 
increases with an increase in Hall parameter m. There 
exists a single-deck boundary layer in the region near 
the stationary plate for large values of M2 and K2. The 
boundary layer thickness first decreases, reaches a 
minimum and then increases with an increase in Hall 
parameter. 
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