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Abstract: PAM (Partitioning around Medoid) is introduced to divide the swarm into several different sub-

populations. PAM is one of k-medoids clustering algorithms based on partitioning methods. It attempts to divide n 

objects into k partitions. This algorithm overcomes the drawbacks of being sensitive to the initial partitions in k-

means algorithm. In the parallel PSO algorithms, the swarm needs to be divided into several different smaller 

swarms. This study can be excellently completed by PAM. The aim of clustering is that particles within the same 

sub-population are relative concentrative, so that they can be relatively easy to learn. The purposes of this strategy 

are that the limited time will be spent on the most effective search; therefore, the search efficiency can also be 

significantly improved. In order to explore the whole solution space evenly, uniform design is introduced to generate 

an initial population, in which the population members are scattered uniformly over the feasible solution space. In 

evolution, uniform design is also introduced to replace some worse individuals. Based on abovementioned these 

technologies, a novel algorithm, parallel multi-swarm PSO based on k-medoids and uniform design, is proposed. A 

difference between the proposed algorithm and the others is that PAM and uniform design are both firstly introduced 

to parallel PSO algorithms. 

 
Keywords: Multi-swarm, medoids, PAM, parallel, particle swarm optimization, uniform design 

 

INTRODUCTION 

 

The particle swarm Optimization Algorithm (PSO) 

is one of swarm intelligence optimization algorithms, 

which were proposed by Eberhart and Kennedy (1995), 

and Kennedy and Eberhart (1995). The idea is 

originated from the exchange and sharing of 

information among bird individuals in the process of 

searching food. Each individual can benefit from 

discovery and flight experience of the others. In PSO 

algorithms, the particle swarm is initialized randomly in 

feasible solution space and each particle has initial 

speed and position. The track is updated through 

individual best position and the global best location, 

which is found by the entire population. This makes 

particles constantly move to the optimal solution and 

ultimately move to the global optimal solution. 

PSO algorithm is easy to fall into local 

optimization, to cause premature convergence problem. 

This is mainly because the proportion of tracking global 

best position is too much. The accumulating of all 

particles’ tracking leads to track much faster. Therefore, 

population diversity will have a rapid decline. This 

causes large amounts of particles to turn into similar 

particle, even only a few particles or one particle. 

Namely, the main reason is rapid decline of population 

diversity.  Thus, the iterations curve decline a great deal  

more quickly in the beginning, but much more slowly 

in the later. This is particularly obvious in the vicinity 

of the optimal solution.  

Parallel algorithm (Dudy et al., 2007; Antonio and 

Carlos, 2007) can solve these above-mentioned 

problems. Parallelization enables particles among each 

sub-population to be independent, thereby the 

population diversity is ensured. In the meanwhile, 

parallel particle swarm algorithms can improve the 

convergence accuracy. Parallel algorithms need to 

divide the swarm into several independent sub-

populations each other. PAM is one of the popular 

clustering algorithms and more robust than k-means in 

the presence of noise and outliers (Jiawei and 

Micheline, 2005). In addition, uniform design can make 

population members uniformly scatter over the feasible 

solution space. Therefore, this study introduces PAM 

and uniform design to the parallel particle swarm 

algorithm. The simulation results show that the 

proposed algorithm has higher performance, higher rate 

of convergence than traditional parallel PSO.  
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PARTICLE SWARM  
OPTIMIZATION ALGORITHMS 

 
Standard particle swarm optimization algorithm: 

Assuming to optimize a continuous function containing 
d variables, search space should be d-dimensional. The 
ith particle's position and velocity respectively, is 
expressed as: Xi = [xi,1, xi,2,…, xi,d] and Vi = [vi,1, 
vi,2,…, vi,d]. The particle's optimal position of the kth 
iteration is (Pbest) Pi = [pi,1, pi,2,…, pi,d], optimal 
position of swarm is (Gbest) Pg = [pg,1, pg,2,…, pg,d]. 
Particles of the population update velocity and position 
in accordance with the following formulas: 
  

))()(())()(()()1( 2211 kxkprckxkprckvwkv ijgjijijijij −⋅⋅+−⋅⋅+⋅=+
     

(1) 
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                 (2) 

where, the parameter w is the inertia weight coefficient, 
which indicates the particle's ability to maintain the last 
speed. The acceleration coefficient c1, c2 represent the 
degree of tracking individual optimal and global 
optimal respectively. The parameters r1 and r2 indicate 
uniformly  distributed  random  numbers  between 0 
and 1.  

The update equation of velocity consists of three 
components, including the previous velocity 
component, a cognitive component and a social 
component. They are mainly controlled by three 
parameters: the inertia weight and two acceleration 
coefficients. Considering different parameter values 
have different influence on the flying behavior of 
particle directly, so we call them as the behavior 
parameter set here. 

From the theoretical analysis of the trajectory of a 
PSO particle (Clerc and Kennedy, 2002), the trajectory 
of a particle Xi converges to a weighted mean of Pi and 
Pg. Whenever the particle converges, it will “fly” to the 
individual best position and the global best position. 
According to the update equation, the individual best 
position of the particle will gradually move closer to the 
global best position. Therefore, all the particles will 
converge onto the global best particle’s position. In 
fact, the particles usually converge on a local optimum. 
 
Some improvements of PSO algorithm: For a 
practical swarm optimization problem, we often need a 
better global search to help the algorithm converge to 
an area quickly and then we need a stronger local 
search to get high precision solution. The inertia weight 
parameter has greatly influence on both global search 
and local search; so many attempts have been tried by 
using various inertia weight strategies to make its 
performance better (Shi and Eberhart, 1999; Chatterjee 
and Siarry, 2004; Chen et al., 2006). In order to balance 
between the global and local exploration abilities and 
obtain a quick search, it is necessary to dynamically 
adjust the inertia weight. Shi and Eberhart (1999) firstly 
have proposed a linearly decreasing inertia weight 

instead of a fixed inertia weight. By linearly decreasing 
the inertia weight from a relatively large value to a 
small value through the run, PSO tends to have better 
global searching ability at beginning of the run while 
having finer local search near the end of run. The 
inertia weight is adjusted with the following formula: 

 

w
(k)

 = wmax – k(wmax - wmin)/kmax 

 

where,  

wmax = The maximal value  

wmin  = The minimal value of w  

k  = The iteration number, with  

kmax   = as its maximal value in a run 

 

In this strategy, the particles could move fast in the 

beginning of the search, so that a sufficient optimal 

region can be quickly detected. The inertia weight 

changes with the iteration number k, so that the particles 

will slow down to search the local region. The strategies 

of nonlinear inertia weight were reported. An improved 

strategy was proposed (Chatterjee and Siarry, 2004): 

 

w
(k)

 = (wmax – wmin).[(kmax - k)/kmax]
n
+wmin 

 

Another algorithm was proposed as follows (Chen 

et al., 2006): 
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All parameters in the aforementioned equations 

share the same meanings with the parameters in the 

linear decreasing strategy. 

A PSO algorithm with self-adaptive and random 

inertia weight has been proposed (Zhang et al., 2005). 

The algorithm selects the inertia weight randomly 

according to the variance of the population’s fitness σ as 

the following formula: 
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From the formula we can see that w is a random 

number between (0.4, 1) and doesn’t decrease linearly. 

It has been proposed that the inertia weights are 

replaced by chaotic map parameter. The chaotic 

decreasing inertia weight and the chaotic stochastic 

inertia weight are proposed (Yong et al., 2007a, b). A 

method, of which random numbers r1 and r2 is replaced 
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by chaotic map, are proposed (Jiang et al., 2005). The 

PSO algorithms which combined chaos search strategy 

are proposed (Yaoyao et al., 2008; Xue-Yao et al., 

2008; Zhenglei et al., 2007).    The    same  features   of   

these strategies are as follows. First of all, the chaotic 

interval variables are mapped to the interval of the 

optimized variable by chaotic mapping. And then, 

chaotic local search is carried out within all particles, or 

some of the superior particles, or in the vicinity of the 

current global optimal solution. The particle swarm 

optimization algorithm based on dynamic chaotic 

perturbations  is  proposed  in  our  previous  study (Jie 

et al., 2009). Dynamic chaotic perturbations can get rid 

of blindly searching and decrease iteration times, 

compared with the multiple local chaotic searching. 

 
Multiple populations or swarms: Many researchers 
have considered multi-populations as a means of 
enhancing the diversity of EAs. A self organizing scout 
was proposed (Branke et al., 2000). It has been shown to 
give excellent results on many peaks benchmark. Zeng 
et al. (2005) proposed an orthogonal design based 
evolutionary algorithm, called ODEA, where its 
population consists of “niches” and an orthogonal 
design method is employed. ODEA borrows some ideas 
from the SOS algorithm, however, the experimental 
results show that the performance of ODEA is better 
than the SOS algorithm. A speciation based PSO 
(SPSO) was developed (Parrott and Li, 2004), it 
dynamically adjusts the number and size of swarms by 
constructing an ordered list of particles, ranked 
according to their fitness, with spatially close particles 
joining a particular species.  
 

THE PAM ALGORITHM 

 
There are many clustering methods available in data 

mining. Typical clustering analysis methods are 
clustering based on partition, hierarchical clustering, 
clustering based on density, clustering based on grid and 
clustering based on model.  

The most frequently used methods of clustering 
based on partition are k-means and k-medoids. In 
contrast to the k-means algorithm, k-medoids chooses 
data points as centers, which make k-medoids method 
more robust than k-means in the presence of noise and 
outliers. The reason is that a medoid is less influenced 
by outliers or other extreme values than a mean. 
Partitioning around medoids, abbreviated PAM is the 
first and the most frequently used k-medoids algorithms, 
as shown in Fig. 1.  

PAM constructs k partitions (clusters) of the given 
dataset, where each partition represents a cluster. Each 
cluster may be represented by a centroid or a cluster 
representative which is some sort of summary 
description of all the objects contained in a cluster. It 
needs to determine k partitions for n objects. The 
process of PAM is by and large as follows. Firstly, 
randomly select k   representative   objects  and   cluster 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: PAM, k-medoids partitioning algorithm 

 

other objects to the same group as the representative 

object according to the minimum value of the distances 

between the representative object and other objects. 

Then try to replace these non -representative objects 

with other non-representative objects, in order to 

minimize squared error. All the possible pairs of objects 

are analyzed, where one object in each pair is considered 

a representative object and the other is not. The total 

cost of the clustering is calculated for each such 

combination. An object, oj, is replaced with such a 

object minimizing squared error. The set of best objects 

in each cluster after iteration forms the representative 

objects for the next iteration. The final set of 

representative objects are the respective medoids of the 

clusters.  

 

UNIFORM DESIGN 

 
Uniform array and uniform design: In this section, we 
briefly describe an experimental design method called 
uniform design. The main objective of uniform design is 
to sample a small set of points from a given set of 
points, such that the sampled points are uniformly 
scattered. The more details can be referred to the study 
(Leung and Wang, 2000). 

Let there be n factors and q levels per factor. When 

n and q are given, the uniform design selects q 

combinations out of q
n
 possible combinations, such that 

these combinations are scattered uniformly over the 

space of all possible combinations. The selected q 

combinations are expressed in terms of a uniform array 

U (n, q) = [Ui,j]q×n, where Ui,j is the level of the jth 

factor in the ith combination and can be calculated by 

the following formula.  
 
U

i, j 
= (iσ

j-1 
mod q) + 1                                          (3)  

 

where, σ is a parameter given in Table 1.  

Algorithm: k-medoids. PAM, a k-medoids algorithm 
for partitioning based on medoid or central objects. 

Input: 

k: the number of clusters, 
D: a data set containing n objects. 

Output: A set of k clusters. 

Method: 
(1) Arbitrarily choose k objects in D as the initial 

representative objects or seeds; 

(2) Repeat 
(3) Assign each remaining object to the cluster with 

the nearest representative object; 

(4) Randomly select a nonrepresentative object, 
donated as orandom; 

(5) Compute the total cost, S, of swapping 

representative object, oj, with orandom; 
(6) if S < 0 then swap oj with orandom to form the 

new set of k representative objects; 

(7) Until no change.  
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Table 1: Values of the parameter σ for different number of factors 

and different number of levels per factor 

Number of levels per factors Number of factors  σ 

5 2~4 2 

7 2~6 3 

11 2~10 7 

13 2 5 

 3 4 

 4~12 6 

17 2~16 10 

19 2~3 8 

 4~18 14 

23 2,13~14, 20~22 7 

 8~12 15 

 3~7, 15~19 17 

29 2 12 

 3 9 

 4~7 16 

 8~12,16~24 8 

 13~15 14 

 25~28 18 

31 2,5~12,20~30 12 

 3~4,13~19 22 

 

Improved Initial Population Based on Uniform Design 

Leung and Wang (2000) had designed a algorithm for 

dividing the solution space and a algorithm for 

generating the initial population. However, algorithm 2 

only considers the dividing of the solution space, not 

does the dividing of the N-dimension space. This will 

bring about some serious problems. If we assume that 

in step 2, Q0 = 5 and N = 10, then U(N, Q0) is 

impossible to be generated because Q0 must be 

larger than N. Namely, algorithm 2 is only fit for the 

low dimension problem, not fit for the high 

dimension problem. In order to overcome the 

shortcomings, we introduce the dividing of the N-

dimension space. Therefore, algorithm 2 is modified as 

follows. 

 

Step 1: Judge whether Q0 is valid or not, as it must be 

found in the 1st column of Table 1. If no, stops 

and shows error messages, otherwise 

continues. 

Step 2: Execute Algorithm 1 to divide [l, u] into S 

subspaces [l (1), u (1)], [l (2), u (2)],… [l (S), u 

(S)]. 

Step 3: Judge whether Q0 is more than N, if yes, turns 

to step 4, otherwise turns to step 5. 

Step 4: Quantize each subspace, and then apply the 

uniform array U (N, Q0) to sample Q0 

points.  

Step 5: We divide N-dimension space into ⌊N/N0⌋ 

parts, where N0 is an integer more than 1 

and less than Q0 and are generally taken as 

Q0-1. Among ⌊N/N0⌋ parts, the 1st part 

corresponds to the dimension from 1 to N0 

and the 2nd part corresponds to the 

dimension from N0+1 to 2*N0 and so forth. 

If the remainder R of N/N0 isn’t equal to 0, 

then a plus part corresponds to the dimension 

from ⌊N/N0⌋*N0+1 to N, whose length is 

surely less than N0. Repeat to execute step 6 

for each part. 

Step 6: Quantize each subspace, and then apply the 

uniform array U (N0, Q0) to sample Q0 points. 

In the plus part, U (N0, Q0) is replaced with 

U(R, Q0), where the remainder R is equal to N-

⌊N/N0⌋*N0. 

Step 7: Based on each fitness function, evaluate the 

quality of each of the S   Q0  points generated in 

step 2, and then select the best ⌊G/D0⌋or 

⌈G/D0⌉ points. Overall, a total of G points are 

selected to form the initial population. For the 

single objective problem, D0 is taken as 1, 

therefore, directly select the best G points.  

 

IMPROVED PARALLEL PSO BASED ON  

PAM AND UNIFORM DESIGN 

 

Thoughts of algorithm: Most of the parallel particle 

swarm algorithms all adopted IPPSO (Is-land-based 

Parallel PSO) model. The whole particle swarm is 

divided into several sub-populations, within which the 

global PSO search is carried out. We calculate and 

evaluate the fitness of each particle and select the best 

as the optimal particle within the sub-population. 

Evolution of each sub-population is carried out by 

single child process. Each child process will adopt 

concentrated migration strategy and periodically 

distributed the best particle in its island to the main 

process. The main process will broadcast the global 

best particle to each child processes and impel them to 

do the global optimum evolution.  

In this study, we will design a parallel PSO 

algorithms based on PAM and uniform design as 

follows. Each child process only communicates with 

the main process and the best particles within each sub-

population are sent to the main process by 

corresponding child process. The main process 

compares all the received best particles within each 

sub-population and generates the best particle and the 

current optimal value within the whole swarm. The 

child process can also communicate with each other 

when communication is needed, rather than the main 

process broadcasts the best particle to every child 

process. This not only prevents premature convergence, 

but also enables each child process to initiatively 

communication with the main process and to reduce 

many blind communications.  

According to Darwin's theory of the survival of the 

fittest, some worse individuals should be eliminated 

from the population as the population is being evolved 

and improved. Uniform design is used to fulfill the task. 
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We can first generate the population based on PAM and 

uniform design within the subinterval defined by the 

individual best. Then replace those worse individuals in 

the old population with those better ones in the new 

population. As the subinterval is a fraction of |S| parts 

of the whole interval, if it is again divided |S| parts, each 

subinterval will be a fraction of |S|
2
 parts of the whole 

interval and so forth. Therefore, the search space will 

change smaller and smaller. This is very fit with the 

principles of from rough search to finely search. In the 

meanwhile, as the population is being evolved and 

improved, the population members are getting closer to 

each other, so that the search space defined by the 

individual best is becoming smaller. Since the number 

of the sample points is fixed, the quantized points are 

getting closer and hence we can get more and more 

precise results. 

IPPSO often adopts the strategy that 

communication is carried on after a fixed iterating 

number or cycle. This strategy is simple and easy to do. 

However, the current optimal individual did not change 

or change very little after a fixed iterating number in 

some occasion, therefore this will cause ineffective 

communication and waste communication time. The 

study improves this situation as follows. Only in certain 

conditions or in necessary occasion will 

communications be carried on. Namely, after one cycle, 

only when the best value in sub-population is better 

than that in the entire swarm will communications 

between the child process and the main process be 

carried out.  

Parallel particle swarm algorithms first need to 

divide the swarms into several sub-populations. IPPSO 

algorithms classify particles according to the index 

value of them. This causes the number of particles in 

each sub-population is equal and the position and 

velocity of every particle is completely different. 

However, in the real-world environments, the size of 

each swarm is seldom the same. At the meanwhile, the 

individuals with the same or similar feature may be 

easily to stay together, which may be so-called “Birds 

of a feather flock together”. Therefore, when dividing 

the particles, the particles with similar features should 

be clustered together to form a sub-population and the 

particles with different features should be divided into 

different swarm. This is to enable the particles within 

the same sub-population to be more easily learned from 

each other. In clustering algorithm, PAM algorithms 

possess the features of high efficiency, high 

expandability and being easily to be implemented. 

Therefore, PAM is chosen as clustering algorithm to 

form sub-population. 

 

Algorithm steps: 

 

Step 1: According to the population N, determine the 

population size Q0 in each subinterval and the 

number S of subintervals, such that Q0*S is 

more than or equal to N, Q0 is a prime and 

must exist in Table 1. Execute Algorithm 3 to 

generate an initial population pop. 

Step 2: Evaluate each particle in pop and then acquire 

the individual best P best and the global best 

value G best. Then, assign G best to the main 

process. 

Step 3: Cluster pop to form K sub-population using 

PAM. Each sub-population is responsible for 

one child process. 

Step 4: Update each particle's position and velocity 

according to the formulas (1) and (2) 

separately within each sub-population. 

Step 5: Within each sub-population, evaluate each 

particle to acquire the individual best P best 

and the local best L best of in its sub-

population. 

Step 6: If a given period (number of iterations), is 

called as the migration period, T, has reached 

and then compare L best and G best. If L best 

is better than G best, then communications are 

carried out between the main process and the 

child process, otherwise the iterating time 

without communications is saved to the 

variable Tno. Among, the steps of 

communication are as follows:  

Firstly, the worst particle of the child process 

is replaced with G best of the main process 

and then the child process transfer L best to the 

main process to replace G best.  
Step 7: If Tno of the child process reaches a 

predefined number (such as 2), then force to 
carry out one-way communication as follows. 
Firstly, replaces the worst particle with L best 
of the child process and then receives the 
global best G best of the main process to 
replace L best of the child process. 

Step 8: If the migration period T reaches the times of 
certain predefined number (such as 5), then 
merge K sub-population into one swarm. The 
population and the individual best after 
merging are marked as Lpop and LP best, 
respectively. 

Step 9: Find the minimum value and the maximum 
value of each dimension of LP best to generate 
a new search space [LTmp, UTmp]. Execute 
Algorithm 3 to generate a new population 
popTmp in the new search space. According to 
Algorithm 3, popTmp is sorted in ascending 
order, therefore the best particle locates in the 
first position and the second best one locates in 
the second position and so forth. Sort Lpop 
and LP best in descending order in term of the 
fitness of LP best, therefore the worst particle 
locates in the first position and the second 
worst  one  locates  in  the  second  position 
and so forth.  
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Step 10: Loop the following step: If the fitness of the 

ith particle in popTmp is less than or equal to 

that of the ith one in LPbest, then the ith 

particle in LPbest and Lpop will be replaced 

the ith particle in popTmp, where i = 1,2,…, 

M, which indicates the population size. 

Otherwise break loop. The purpose of the 

step is to replace those worse individuals in 

Lpop and L Pbest with those better ones in 

popTmp. There exist two extreme cases. One 

of them is that all particles in Lpop and 

LPbest will be replaced and another is that 

none will be replaced. Compare the first 

particle in popTmp with G best, if the former 

is superior to the latter, then G best will be 

updated by the corresponding data of the first 

particle in popTmp. 

Step 11: Cluster the swarm again to form K new sub-

population by PAM and update the data 

information such as population size, the 

individual best and the local best of each new 

sub-population. 

Step 12: Judge whether each sub-population is empty 

or not, if yes, divide half of the largest sub-

population to the empty sub-population and 

update the corresponding information such as 

population size, the individual better and the 

local better of two sub-populations. 

Step 13: If the stop criterion is satisfied, output the 

optimal solution G best and its optimal value, 

otherwise turns to step 4 and continues. 

 

ALGORITHM SIMULATIONS 

  

Four parallel PSO algorithms, IPPSO (Parallel PSO 

based on Island), PAMPPSO (Parallel PSO base on 

PAM), UPPSO (Parallel PSO base on Uniform design) 

and the proposed UPAMPPSO (Parallel PSO base on 

PAM and Uniform design), are respectively adopted to 

optimize several well-known Benchmarks problems 

and their performance are compared. Among the above 

algorithms, PAMPPSO and UPPSO are the algorithms 

of respectively getting rid of the uniform design and 

PAM parts of UPAMPPSO algorithm. Four algorithms 

are respectively carried independently out 30 runs to 

calculate the mean value and standard deviation of the 

optimal value. 

 

Test problems: Several well-known Benchmarks 

problems are shown in Table 2, where f1, f2, f3, f4 and f5 

respectively indicates the function for Sphere, 

Rosenbrock, Griewank, Rastrigrin and Schwefel. Their 

theoretical optimal values are all 0 and dimensions are 

all assumed as 30.  
 

Table 2: Test function 

Function Expression Search scopes 
 [-100,100] 

 

[-30,30] 

 

[-600,600] 

 

[-100,100] 

 

[-10,10] 

 
Table 3: The mean value when k = 3 

Fun IPPSO PAMPPSO  UPPSO UPAMPPSO 

f1 1.11 1.39e-5 2.03e-6 4.51e-8 

f2 5.65 5.24 3.94 3.56 

f3 1.82e-1 8.88e-3 2.47e-2 7.31e-3 

f4 4.56 4.48 4.59 4.19 

f5 2.64 1.88 8.44e-5 9.81e-6 

 

Table 4: The standard deviation when K = 3 

Fun IPPSO PAMPPSO  UPPSO UPAMPPSO 

f1 2.88 3.07e-5 1.78e-6 3.27e-8 

f2 1.22 1.95 0.75 0.78 

f3 2.01e-1 6.87e-3 2.88e-2 8.31e-3 

f4 3.25 e-1 2.63e-1 3.21e-1 2.64e-1 

f5 3.87e-1 1.32 6.70 e-5 8.01e-6 

 

Parameter values: The parameters of four parallel 

PSO algorithms are set as follows. 

 

� Parameters for PSO: The linear descending 

inertia weight coefficient is within the closed 

interval [0.1, 1]. Population size is 40 and the 

acceleration coefficient c1, c2 are both taken as 2. 

� Parameters for parallel: The migration period T 

is 10. In PAMPPSO and UPAMPPSO, when Tno 

of the child process is taken as 2, the one-way 

communication is forced to carry out. When the 

migration periods T are the times of 5, UPPSO, 

PAMPPSO and UPAMPPSO will carry out 

corresponding operating. 

� Parameters for uniform design: The number of 

subintervals S is 4 and the number of the sample 

points or the population size of each subinterval 

Q0 is 17. 

� Stopping condition: the maximal generations are 

1000.  

 

RESULTS 

 

When  the  numbers  of sub-population K is equal 

to 3, the mean value and standard deviation of the 

optimal value are shown in Table 3 and 4 and the 

convergence processes of the mean value for f1, f2, f3, f4 

and, f5 are respectively shown in the left Fig. 2 to 6. 

When K = 5, the mean value and standard deviation of 

the optimal value are shown in Table 5 and 6 and the 

convergence processes of the mean value for f1,f2, f3, f4 

and ,f5 are respectively shown in the right Fig. 2 to 6. 
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Fig. 2: The convergence process of  the mean value for f1 
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Fig. 3: The convergence process of the mean value for f2 
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Fig. 4: The convergence process of the mean value for f3 
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Fig. 5: The convergence process of  the mean value for f4 
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Fig. 6: The convergence process of  the mean value for f5 

 
Table 5: The mean value when K = 5 

Fun IPPSO PAMPPSO  UPPSO  UPAMPPSO 

f1 2.27 1.50e-4 2.14e-5  2.46e-7 

f2 6.63 5.95 3.43  3.25 

f3 7.02e-1 2.11e-2 1.27e-1  1.21e-2 

f4 5.21 4.47 4.69  3.85 

f5 3.01 1.84 1.41e-3  1845e-4 

 

Table 6: The standard deviation when K = 5 

Fun IPPSO PAMPPSO  UPPSO UPAMPPSO 

f1 1.02 3.07e-4 1.82e-5 5.20e-7 

f2 7.99e-1 1.17 1.27e-1 1.05 

f3 1.83e-1 1.94e-2 7.58e-2 1.82e-2 

f4 2.39e-1 3.39e-1 1.63e-1 3.83e-1 

f5 3.11e-1 1.34 5.24e-4 1.66e-4 

 

From Table 3 and 5, we can see that since the 

numbers of sub-population is 3 and 5 respectively, so 

the items in Table 5 converge more slowly than those in 

Table 3. This reason is that the more the number of sub-

populations is, the less number of particles within each 

sub-population is and the fewer the opportunities for 

learning from each other within the sub-population are. 

In the migration cycle, each particle is impacted by the 

local optimal solution rather than the global optimal 

solution within its associated sub-population. Only 

when migration cycle is reached, information may be 

exchanged each other to obtain the global optimal 

solution. However, the particles among various sub-

populations can not exchange information within the 

migration cycle. That is to say, the more the number of 

sub-populations is, the slower the convergence speed is 

and the easier to avoid premature convergence. 

The proposed algorithm compared with IPPSO, 

there are much improvement on the f1 ~ f5, as shown in 

Table 3 to 4 and Fig. 2 to 6.  

For f1, the mean value of in Table 3 decreases by 8 

orders of magnitude and that in Table 5 decreases by 7 

orders of magnitude. The standard deviation is similar 

to the mean value. Figure 2a shows that the proposed 

algorithm inclines more quickly than IPPSO, especially 

in later periods of iterations. In Fig. 2a, the curve of the 

proposed algorithm is always below that of IPPSO and 

is almost parallel after 800 iterations. In Fig. 2b, there 

are a little difference after 20 iterations, apparent 

difference after 80 iterations and almost parallel after 

700 iterations between the curves of the proposed 

algorithm and IPPSO. 

For f2, Table 3 and 4 show that the mean value and 

the standard deviation of the proposed algorithm are 

both better than in IPPSO, Table 5 is similar to Table 3. 

In Fig. 3a,b, there is distinct difference on the curve of 

the proposed algorithm compared with that of IPPSO 

after 50 iterations and almost parallel after 700 

iterations. 

There is a little similar in the mean value f3 

compared with f1.The mean value of the proposed 

algorithm in Table 3 decreases by 2 orders of magnitude 

and that in Table 5 decreases by 1 order of magnitude. 

In Table 4 and 6, the variations of the standard 

deviation are similar to those of the mean value. In the 

Fig. 4a, there is distinct difference on the curve of the 

proposed algorithm compared with that of IPPSO after 

100 iterations and almost parallel after 850 iterations. In 

Fig. 4b, there are apparent difference after 50 iterations 

and almost parallel after 800 iterations. 

The results of f4 are similar to that of f2 in Table 3 

and 5. The mean value and the standard deviation of the 

proposed algorithm are both significantly smaller than 

those of IPPSO. In Fig. 5a, there is distinct difference 

on the curve of the proposed algorithm compared with 

that of IPPSO after 100 iterations and almost parallel 

after 850 iterations. In Fig. 5b, there are apparent 

difference after 50 iterations and almost parallel after 

800 iterations. 

For f5, the mean value of the proposed algorithm in 

Table 3 decreases by 6 orders of magnitude and that in 

Table 5 decreases by 4 orders of magnitude. The 

standard deviation of the proposed algorithm in Table 4 

decreases by 5 orders of magnitude and that in Table 4 

decreases by 3 orders of magnitude. 

In Fig. 6a, there is distinct difference on the curve 

of the proposed algorithm compared with that of IPPSO 

after 450 iterations and almost parallel after 700 

iterations. In Fig. 6b, there are apparent difference after 

500   iterations   and almost parallel after 700 iterations. 
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Table 7: The statistical value in different dimension  

Dim. IPPSO PAMPPSO  UPPSO UPAMPPSO 

10 1.5721e-13 2.2204e-16 2.2204e-16 2.2204e-16 

20 9.8645e-6 2.8209e-7 7.2922e-8 5.9779e-9 

30 2.6418 1.8796 8.4421e-5 9.8139e-6 

40 3.4779 2.3869 2.0144e-3 3.3103e-4 

50 4.1685 3.3845 1.2108e-2 4.5766e-3 

60 4.4364 3.7610 3.8842e-1 7.7851e-2 

70 4.7911 4.0950 2.8510e-1 2.1207e-1 

80 4.9808 4.8673 1.0999 2.3619e-1 

90 5.2878 4.7461 1.6481 9.0177e-1 

100 5.3292 5.2586 2.7576 2.5298 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7: The mean value versus the dimension 

 

From the abovementioned simulations results, a 

conclusion can be drawn that the proposed algorithm is 

much more stable than IPPSO and its rate of 

convergence is much faster than IPPSO. 

 

Influence of dimension: In order to find out the 

influence of dimension, we carry out an experiment as 

follows. The dimension respectively is 10, 20, 30, 40, 

50, 60, 70, 80, 90, 100 and other conditions keep 

unchanged. The test function f5, namely Schwefel, is 

iterated 1000 time and independently carried out 30 

runs to get its mean value. The final outputs are shown 

in Table 7. We assume the dimension as x axis, the 

mean value as y axis and the final curve figure is shown 

in Fig. 7. 

Table 7 and Fig. 7 both show that the mean values 

of several algorithms both increase with increasing in 

dimension. However, the curve of UPAMPPSO in Fig.7 

lies always in below that of the others and the mean 

value of UPAMPPSO is always the smallest in Table 7, 

which just indicates the proposed algorithm is superior 

to the others. Furthermore, this also indicates that the 

dimension has no influence on the performance of the 

proposed algorithm.  

 

Influence of Q0 and S in uniform design: In order to 

find out the influence of Q0 and S in the uniform design, 

we carry out an experiment as follows. The test 

function f4 with dimension of 30 and f5 with dimension 

of 50 is respectively iterated 1000 time using UPPSO 

and  independently   carried  out 30 runs to get its mean  

Table 8: The statistical value 

Q0 f4, S = 8 f4, S = 16 f4, S = 32 f5, S = 8 f5, S = 16 f5, S = 32 

5 4.0 4.5 4.2 8.6e-2 3.3e-2 1.1e-2 

7 4.9 4.8 3.8 4.9e-2 6.7e-2 1.2e-2 

11 4.3 4.8 4.5 3.0e-2 3.2e-1 1.1e-2 

13 4.5 4.3 4.3 6.0e-3 8.8e-3 1.9e-3 

17 3.9 3.8 4.8 2.0e-2 8.3e-3 6. 6e-3 

19 10.3 10.3 10.3 4.1 4.1 4.1 

23 9.9 9.9 9.9 3.7 3.7 3.7 

29 11.7 11.7 11.7 5.2 5.1 5.1 

31 11.7 11.7 11.7 5.3 5.1 5.1 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8: The mean value of f4 amd f5 with different Q0 and S 

 
value. The final outputs are shown in Table 8. We 
assume Q0 as x axis, the mean value as y axis and the 
final curve figure is shown in Fig. 8.  

From Table 8 and Fig. 8, we can see that its mean 
values when Q0 = 5, 7, 11, 13 and 17 are greatly 
superior to those when Q0 = 19, 23, 29 and 31. This can 
guide how to choose the parameters Q0. At meanwhile, 
for the same function, when Q0 is kept unchanged, the 
function values of different S are close to each other. 
This indicates that the influence of S is far fewer 
compared with Q0, therefore, the influence of S may be 
ignored in the uniform design. A good Q0 greatly 
influence the performance of the uniform design, 
therefore, it is urgent how to choose a good Q0. From 
Table 8 and Fig. 8, we can also see that the mean values 
when Q0 = 5, 7, 11, 13 and 17 have little difference; 
therefore, any of them can be taken a good Q0. 
 

CONCLUSION 

 
From Thoughts of the algorithm and simulation, 

we can see the effects of the proposed algorithm are 

better than those of IPPSO and closer to the theoretical 

optimal value. The proposed algorithm increases re-

clustering when migration cycle has reached a certain 

value, but the improvement of algorithm performance is 

very obvious. This shows that when the position and 

speed have varied re-clustering is very necessary for a 

certain time. Meanwhile, uniform design has great 

influence on the improvement of algorithm 

performance. The simulation results just confirm this 

conclusion. 
From another point of view, a crude search is 

needed in the iterating early period and a fine search is 
needed in the iterating later period. Similar particles are 
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clustered together and easier to learn from each other 
by PAM. Namely, PAM carry out the function of a fine 
search. Meanwhile, the uniform design can carry out 
the function of the crude search. The combination of the 
two methods just serves as the combination of the crude 
search and the fine search, therefore, the proposed 
algorithm certainly outperform IPPSO algorithm. 
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