
Research Journal of Applied Sciences, Engineering and Technology 5(8): 2576-2585, 2013

DOI:10.19026/rjaset.5.4699

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: August 07, 2012 Accepted: September 24, 2012 Published: March 15, 2013

Corresponding Author: Jie Zhang, School of Computer Science and Technology, Xidian University, Xi’an 710071, P.R. China
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

2576

Research Article

Parallel Multi-Swarm PSO Based on K-Medoids and Uniform Design

1, 2
Jie Zhang,

1
Yuping Wang and

2
Junhong Feng

1
School of Computer Science and Technology, Xidian University, Xi’an 710071, P.R. China

2
Department of Computer Science and Technology, Guangzhou University Sontan College, Zengcheng

511370, Guangzhou, P.R. China

Abstract: PAM (Partitioning around Medoid) is introduced to divide the swarm into several different sub-

populations. PAM is one of k-medoids clustering algorithms based on partitioning methods. It attempts to divide n

objects into k partitions. This algorithm overcomes the drawbacks of being sensitive to the initial partitions in k-

means algorithm. In the parallel PSO algorithms, the swarm needs to be divided into several different smaller

swarms. This study can be excellently completed by PAM. The aim of clustering is that particles within the same

sub-population are relative concentrative, so that they can be relatively easy to learn. The purposes of this strategy

are that the limited time will be spent on the most effective search; therefore, the search efficiency can also be

significantly improved. In order to explore the whole solution space evenly, uniform design is introduced to generate

an initial population, in which the population members are scattered uniformly over the feasible solution space. In

evolution, uniform design is also introduced to replace some worse individuals. Based on abovementioned these

technologies, a novel algorithm, parallel multi-swarm PSO based on k-medoids and uniform design, is proposed. A

difference between the proposed algorithm and the others is that PAM and uniform design are both firstly introduced

to parallel PSO algorithms.

Keywords: Multi-swarm, medoids, PAM, parallel, particle swarm optimization, uniform design

INTRODUCTION

The particle swarm Optimization Algorithm (PSO)

is one of swarm intelligence optimization algorithms,

which were proposed by Eberhart and Kennedy (1995),

and Kennedy and Eberhart (1995). The idea is

originated from the exchange and sharing of

information among bird individuals in the process of

searching food. Each individual can benefit from

discovery and flight experience of the others. In PSO

algorithms, the particle swarm is initialized randomly in

feasible solution space and each particle has initial

speed and position. The track is updated through

individual best position and the global best location,

which is found by the entire population. This makes

particles constantly move to the optimal solution and

ultimately move to the global optimal solution.

PSO algorithm is easy to fall into local

optimization, to cause premature convergence problem.

This is mainly because the proportion of tracking global

best position is too much. The accumulating of all

particles’ tracking leads to track much faster. Therefore,

population diversity will have a rapid decline. This

causes large amounts of particles to turn into similar

particle, even only a few particles or one particle.

Namely, the main reason is rapid decline of population

diversity. Thus, the iterations curve decline a great deal

more quickly in the beginning, but much more slowly

in the later. This is particularly obvious in the vicinity

of the optimal solution.

Parallel algorithm (Dudy et al., 2007; Antonio and

Carlos, 2007) can solve these above-mentioned

problems. Parallelization enables particles among each

sub-population to be independent, thereby the

population diversity is ensured. In the meanwhile,

parallel particle swarm algorithms can improve the

convergence accuracy. Parallel algorithms need to

divide the swarm into several independent sub-

populations each other. PAM is one of the popular

clustering algorithms and more robust than k-means in

the presence of noise and outliers (Jiawei and

Micheline, 2005). In addition, uniform design can make

population members uniformly scatter over the feasible

solution space. Therefore, this study introduces PAM

and uniform design to the parallel particle swarm

algorithm. The simulation results show that the

proposed algorithm has higher performance, higher rate

of convergence than traditional parallel PSO.

Res. J. Appl. Sci. Eng. Technol., 5(8): 2576-2585, 2013

2577

PARTICLE SWARM
OPTIMIZATION ALGORITHMS

Standard particle swarm optimization algorithm:

Assuming to optimize a continuous function containing
d variables, search space should be d-dimensional. The
ith particle's position and velocity respectively, is
expressed as: Xi = [xi,1, xi,2,…, xi,d] and Vi = [vi,1,
vi,2,…, vi,d]. The particle's optimal position of the kth
iteration is (Pbest) Pi = [pi,1, pi,2,…, pi,d], optimal
position of swarm is (Gbest) Pg = [pg,1, pg,2,…, pg,d].
Particles of the population update velocity and position
in accordance with the following formulas:

))()(())()(()()1(2211 kxkprckxkprckvwkv ijgjijijijij −⋅⋅+−⋅⋅+⋅=+

(1)

)1()()1(++=+ kvkxkx ijijij
 (2)

where, the parameter w is the inertia weight coefficient,
which indicates the particle's ability to maintain the last
speed. The acceleration coefficient c1, c2 represent the
degree of tracking individual optimal and global
optimal respectively. The parameters r1 and r2 indicate
uniformly distributed random numbers between 0
and 1.

The update equation of velocity consists of three
components, including the previous velocity
component, a cognitive component and a social
component. They are mainly controlled by three
parameters: the inertia weight and two acceleration
coefficients. Considering different parameter values
have different influence on the flying behavior of
particle directly, so we call them as the behavior
parameter set here.

From the theoretical analysis of the trajectory of a
PSO particle (Clerc and Kennedy, 2002), the trajectory
of a particle Xi converges to a weighted mean of Pi and
Pg. Whenever the particle converges, it will “fly” to the
individual best position and the global best position.
According to the update equation, the individual best
position of the particle will gradually move closer to the
global best position. Therefore, all the particles will
converge onto the global best particle’s position. In
fact, the particles usually converge on a local optimum.

Some improvements of PSO algorithm: For a
practical swarm optimization problem, we often need a
better global search to help the algorithm converge to
an area quickly and then we need a stronger local
search to get high precision solution. The inertia weight
parameter has greatly influence on both global search
and local search; so many attempts have been tried by
using various inertia weight strategies to make its
performance better (Shi and Eberhart, 1999; Chatterjee
and Siarry, 2004; Chen et al., 2006). In order to balance
between the global and local exploration abilities and
obtain a quick search, it is necessary to dynamically
adjust the inertia weight. Shi and Eberhart (1999) firstly
have proposed a linearly decreasing inertia weight

instead of a fixed inertia weight. By linearly decreasing
the inertia weight from a relatively large value to a
small value through the run, PSO tends to have better
global searching ability at beginning of the run while
having finer local search near the end of run. The
inertia weight is adjusted with the following formula:

w
(k)

 = wmax – k(wmax - wmin)/kmax

where,

wmax = The maximal value

wmin = The minimal value of w

k = The iteration number, with

kmax = as its maximal value in a run

In this strategy, the particles could move fast in the

beginning of the search, so that a sufficient optimal

region can be quickly detected. The inertia weight

changes with the iteration number k, so that the particles

will slow down to search the local region. The strategies

of nonlinear inertia weight were reported. An improved

strategy was proposed (Chatterjee and Siarry, 2004):

w
(k)

 = (wmax – wmin).[(kmax - k)/kmax]
n
+wmin

Another algorithm was proposed as follows (Chen

et al., 2006):

)
10

/(

minmaxmin

)(
max

)(

k
k

k ewwww
−

⋅−+=

and

2max)]

4
/([

minmaxmin

)()(

k
k

k ewwww
−

⋅−+=

All parameters in the aforementioned equations

share the same meanings with the parameters in the

linear decreasing strategy.

A PSO algorithm with self-adaptive and random

inertia weight has been proposed (Zhang et al., 2005).

The algorithm selects the inertia weight randomly

according to the variance of the population’s fitness σ as

the following formula:









<+

≥+
=

0.1,
0.2

()
4.0

0.1,
0.2

()
5.0

σ

σ

rand

rand

w

From the formula we can see that w is a random

number between (0.4, 1) and doesn’t decrease linearly.

It has been proposed that the inertia weights are

replaced by chaotic map parameter. The chaotic

decreasing inertia weight and the chaotic stochastic

inertia weight are proposed (Yong et al., 2007a, b). A

method, of which random numbers r1 and r2 is replaced

Res. J. Appl. Sci. Eng. Technol., 5(8): 2576-2585, 2013

2578

by chaotic map, are proposed (Jiang et al., 2005). The

PSO algorithms which combined chaos search strategy

are proposed (Yaoyao et al., 2008; Xue-Yao et al.,

2008; Zhenglei et al., 2007). The same features of

these strategies are as follows. First of all, the chaotic

interval variables are mapped to the interval of the

optimized variable by chaotic mapping. And then,

chaotic local search is carried out within all particles, or

some of the superior particles, or in the vicinity of the

current global optimal solution. The particle swarm

optimization algorithm based on dynamic chaotic

perturbations is proposed in our previous study (Jie

et al., 2009). Dynamic chaotic perturbations can get rid

of blindly searching and decrease iteration times,

compared with the multiple local chaotic searching.

Multiple populations or swarms: Many researchers
have considered multi-populations as a means of
enhancing the diversity of EAs. A self organizing scout
was proposed (Branke et al., 2000). It has been shown to
give excellent results on many peaks benchmark. Zeng
et al. (2005) proposed an orthogonal design based
evolutionary algorithm, called ODEA, where its
population consists of “niches” and an orthogonal
design method is employed. ODEA borrows some ideas
from the SOS algorithm, however, the experimental
results show that the performance of ODEA is better
than the SOS algorithm. A speciation based PSO
(SPSO) was developed (Parrott and Li, 2004), it
dynamically adjusts the number and size of swarms by
constructing an ordered list of particles, ranked
according to their fitness, with spatially close particles
joining a particular species.

THE PAM ALGORITHM

There are many clustering methods available in data

mining. Typical clustering analysis methods are
clustering based on partition, hierarchical clustering,
clustering based on density, clustering based on grid and
clustering based on model.

The most frequently used methods of clustering
based on partition are k-means and k-medoids. In
contrast to the k-means algorithm, k-medoids chooses
data points as centers, which make k-medoids method
more robust than k-means in the presence of noise and
outliers. The reason is that a medoid is less influenced
by outliers or other extreme values than a mean.
Partitioning around medoids, abbreviated PAM is the
first and the most frequently used k-medoids algorithms,
as shown in Fig. 1.

PAM constructs k partitions (clusters) of the given
dataset, where each partition represents a cluster. Each
cluster may be represented by a centroid or a cluster
representative which is some sort of summary
description of all the objects contained in a cluster. It
needs to determine k partitions for n objects. The
process of PAM is by and large as follows. Firstly,
randomly select k representative objects and cluster

Fig. 1: PAM, k-medoids partitioning algorithm

other objects to the same group as the representative

object according to the minimum value of the distances

between the representative object and other objects.

Then try to replace these non -representative objects

with other non-representative objects, in order to

minimize squared error. All the possible pairs of objects

are analyzed, where one object in each pair is considered

a representative object and the other is not. The total

cost of the clustering is calculated for each such

combination. An object, oj, is replaced with such a

object minimizing squared error. The set of best objects

in each cluster after iteration forms the representative

objects for the next iteration. The final set of

representative objects are the respective medoids of the

clusters.

UNIFORM DESIGN

Uniform array and uniform design: In this section, we
briefly describe an experimental design method called
uniform design. The main objective of uniform design is
to sample a small set of points from a given set of
points, such that the sampled points are uniformly
scattered. The more details can be referred to the study
(Leung and Wang, 2000).

Let there be n factors and q levels per factor. When

n and q are given, the uniform design selects q

combinations out of q
n
 possible combinations, such that

these combinations are scattered uniformly over the

space of all possible combinations. The selected q

combinations are expressed in terms of a uniform array

U (n, q) = [Ui,j]q×n, where Ui,j is the level of the jth

factor in the ith combination and can be calculated by

the following formula.

U

i, j
= (iσ

j-1
mod q) + 1 (3)

where, σ is a parameter given in Table 1.

Algorithm: k-medoids. PAM, a k-medoids algorithm
for partitioning based on medoid or central objects.

Input:

k: the number of clusters,
D: a data set containing n objects.

Output: A set of k clusters.

Method:
(1) Arbitrarily choose k objects in D as the initial

representative objects or seeds;

(2) Repeat
(3) Assign each remaining object to the cluster with

the nearest representative object;

(4) Randomly select a nonrepresentative object,
donated as orandom;

(5) Compute the total cost, S, of swapping

representative object, oj, with orandom;
(6) if S < 0 then swap oj with orandom to form the

new set of k representative objects;

(7) Until no change.

Res. J. Appl. Sci. Eng. Technol., 5(8): 2576-2585, 2013

2579

Table 1: Values of the parameter σ for different number of factors

and different number of levels per factor

Number of levels per factors Number of factors σ

5 2~4 2

7 2~6 3

11 2~10 7

13 2 5

 3 4

 4~12 6

17 2~16 10

19 2~3 8

 4~18 14

23 2,13~14, 20~22 7

 8~12 15

 3~7, 15~19 17

29 2 12

 3 9

 4~7 16

 8~12,16~24 8

 13~15 14

 25~28 18

31 2,5~12,20~30 12

 3~4,13~19 22

Improved Initial Population Based on Uniform Design

Leung and Wang (2000) had designed a algorithm for

dividing the solution space and a algorithm for

generating the initial population. However, algorithm 2

only considers the dividing of the solution space, not

does the dividing of the N-dimension space. This will

bring about some serious problems. If we assume that

in step 2, Q0 = 5 and N = 10, then U(N, Q0) is

impossible to be generated because Q0 must be

larger than N. Namely, algorithm 2 is only fit for the

low dimension problem, not fit for the high

dimension problem. In order to overcome the

shortcomings, we introduce the dividing of the N-

dimension space. Therefore, algorithm 2 is modified as

follows.

Step 1: Judge whether Q0 is valid or not, as it must be

found in the 1st column of Table 1. If no, stops

and shows error messages, otherwise

continues.

Step 2: Execute Algorithm 1 to divide [l, u] into S

subspaces [l (1), u (1)], [l (2), u (2)],… [l (S), u

(S)].

Step 3: Judge whether Q0 is more than N, if yes, turns

to step 4, otherwise turns to step 5.

Step 4: Quantize each subspace, and then apply the

uniform array U (N, Q0) to sample Q0

points.

Step 5: We divide N-dimension space into ⌊N/N0⌋

parts, where N0 is an integer more than 1

and less than Q0 and are generally taken as

Q0-1. Among ⌊N/N0⌋ parts, the 1st part

corresponds to the dimension from 1 to N0

and the 2nd part corresponds to the

dimension from N0+1 to 2*N0 and so forth.

If the remainder R of N/N0 isn’t equal to 0,

then a plus part corresponds to the dimension

from ⌊N/N0⌋*N0+1 to N, whose length is

surely less than N0. Repeat to execute step 6

for each part.

Step 6: Quantize each subspace, and then apply the

uniform array U (N0, Q0) to sample Q0 points.

In the plus part, U (N0, Q0) is replaced with

U(R, Q0), where the remainder R is equal to N-

⌊N/N0⌋*N0.

Step 7: Based on each fitness function, evaluate the

quality of each of the S Q0 points generated in

step 2, and then select the best ⌊G/D0⌋or

⌈G/D0⌉ points. Overall, a total of G points are

selected to form the initial population. For the

single objective problem, D0 is taken as 1,

therefore, directly select the best G points.

IMPROVED PARALLEL PSO BASED ON

PAM AND UNIFORM DESIGN

Thoughts of algorithm: Most of the parallel particle

swarm algorithms all adopted IPPSO (Is-land-based

Parallel PSO) model. The whole particle swarm is

divided into several sub-populations, within which the

global PSO search is carried out. We calculate and

evaluate the fitness of each particle and select the best

as the optimal particle within the sub-population.

Evolution of each sub-population is carried out by

single child process. Each child process will adopt

concentrated migration strategy and periodically

distributed the best particle in its island to the main

process. The main process will broadcast the global

best particle to each child processes and impel them to

do the global optimum evolution.

In this study, we will design a parallel PSO

algorithms based on PAM and uniform design as

follows. Each child process only communicates with

the main process and the best particles within each sub-

population are sent to the main process by

corresponding child process. The main process

compares all the received best particles within each

sub-population and generates the best particle and the

current optimal value within the whole swarm. The

child process can also communicate with each other

when communication is needed, rather than the main

process broadcasts the best particle to every child

process. This not only prevents premature convergence,

but also enables each child process to initiatively

communication with the main process and to reduce

many blind communications.

According to Darwin's theory of the survival of the

fittest, some worse individuals should be eliminated

from the population as the population is being evolved

and improved. Uniform design is used to fulfill the task.

Res. J. Appl. Sci. Eng. Technol., 5(8): 2576-2585, 2013

2580

We can first generate the population based on PAM and

uniform design within the subinterval defined by the

individual best. Then replace those worse individuals in

the old population with those better ones in the new

population. As the subinterval is a fraction of |S| parts

of the whole interval, if it is again divided |S| parts, each

subinterval will be a fraction of |S|
2
 parts of the whole

interval and so forth. Therefore, the search space will

change smaller and smaller. This is very fit with the

principles of from rough search to finely search. In the

meanwhile, as the population is being evolved and

improved, the population members are getting closer to

each other, so that the search space defined by the

individual best is becoming smaller. Since the number

of the sample points is fixed, the quantized points are

getting closer and hence we can get more and more

precise results.

IPPSO often adopts the strategy that

communication is carried on after a fixed iterating

number or cycle. This strategy is simple and easy to do.

However, the current optimal individual did not change

or change very little after a fixed iterating number in

some occasion, therefore this will cause ineffective

communication and waste communication time. The

study improves this situation as follows. Only in certain

conditions or in necessary occasion will

communications be carried on. Namely, after one cycle,

only when the best value in sub-population is better

than that in the entire swarm will communications

between the child process and the main process be

carried out.

Parallel particle swarm algorithms first need to

divide the swarms into several sub-populations. IPPSO

algorithms classify particles according to the index

value of them. This causes the number of particles in

each sub-population is equal and the position and

velocity of every particle is completely different.

However, in the real-world environments, the size of

each swarm is seldom the same. At the meanwhile, the

individuals with the same or similar feature may be

easily to stay together, which may be so-called “Birds

of a feather flock together”. Therefore, when dividing

the particles, the particles with similar features should

be clustered together to form a sub-population and the

particles with different features should be divided into

different swarm. This is to enable the particles within

the same sub-population to be more easily learned from

each other. In clustering algorithm, PAM algorithms

possess the features of high efficiency, high

expandability and being easily to be implemented.

Therefore, PAM is chosen as clustering algorithm to

form sub-population.

Algorithm steps:

Step 1: According to the population N, determine the

population size Q0 in each subinterval and the

number S of subintervals, such that Q0*S is

more than or equal to N, Q0 is a prime and

must exist in Table 1. Execute Algorithm 3 to

generate an initial population pop.

Step 2: Evaluate each particle in pop and then acquire

the individual best P best and the global best

value G best. Then, assign G best to the main

process.

Step 3: Cluster pop to form K sub-population using

PAM. Each sub-population is responsible for

one child process.

Step 4: Update each particle's position and velocity

according to the formulas (1) and (2)

separately within each sub-population.

Step 5: Within each sub-population, evaluate each

particle to acquire the individual best P best

and the local best L best of in its sub-

population.

Step 6: If a given period (number of iterations), is

called as the migration period, T, has reached

and then compare L best and G best. If L best

is better than G best, then communications are

carried out between the main process and the

child process, otherwise the iterating time

without communications is saved to the

variable Tno. Among, the steps of

communication are as follows:

Firstly, the worst particle of the child process

is replaced with G best of the main process

and then the child process transfer L best to the

main process to replace G best.
Step 7: If Tno of the child process reaches a

predefined number (such as 2), then force to
carry out one-way communication as follows.
Firstly, replaces the worst particle with L best
of the child process and then receives the
global best G best of the main process to
replace L best of the child process.

Step 8: If the migration period T reaches the times of
certain predefined number (such as 5), then
merge K sub-population into one swarm. The
population and the individual best after
merging are marked as Lpop and LP best,
respectively.

Step 9: Find the minimum value and the maximum
value of each dimension of LP best to generate
a new search space [LTmp, UTmp]. Execute
Algorithm 3 to generate a new population
popTmp in the new search space. According to
Algorithm 3, popTmp is sorted in ascending
order, therefore the best particle locates in the
first position and the second best one locates in
the second position and so forth. Sort Lpop
and LP best in descending order in term of the
fitness of LP best, therefore the worst particle
locates in the first position and the second
worst one locates in the second position
and so forth.

Res. J. Appl. Sci. Eng. Technol., 5(8): 2576-2585, 2013

2581

Step 10: Loop the following step: If the fitness of the

ith particle in popTmp is less than or equal to

that of the ith one in LPbest, then the ith

particle in LPbest and Lpop will be replaced

the ith particle in popTmp, where i = 1,2,…,

M, which indicates the population size.

Otherwise break loop. The purpose of the

step is to replace those worse individuals in

Lpop and L Pbest with those better ones in

popTmp. There exist two extreme cases. One

of them is that all particles in Lpop and

LPbest will be replaced and another is that

none will be replaced. Compare the first

particle in popTmp with G best, if the former

is superior to the latter, then G best will be

updated by the corresponding data of the first

particle in popTmp.

Step 11: Cluster the swarm again to form K new sub-

population by PAM and update the data

information such as population size, the

individual best and the local best of each new

sub-population.

Step 12: Judge whether each sub-population is empty

or not, if yes, divide half of the largest sub-

population to the empty sub-population and

update the corresponding information such as

population size, the individual better and the

local better of two sub-populations.

Step 13: If the stop criterion is satisfied, output the

optimal solution G best and its optimal value,

otherwise turns to step 4 and continues.

ALGORITHM SIMULATIONS

Four parallel PSO algorithms, IPPSO (Parallel PSO

based on Island), PAMPPSO (Parallel PSO base on

PAM), UPPSO (Parallel PSO base on Uniform design)

and the proposed UPAMPPSO (Parallel PSO base on

PAM and Uniform design), are respectively adopted to

optimize several well-known Benchmarks problems

and their performance are compared. Among the above

algorithms, PAMPPSO and UPPSO are the algorithms

of respectively getting rid of the uniform design and

PAM parts of UPAMPPSO algorithm. Four algorithms

are respectively carried independently out 30 runs to

calculate the mean value and standard deviation of the

optimal value.

Test problems: Several well-known Benchmarks

problems are shown in Table 2, where f1, f2, f3, f4 and f5

respectively indicates the function for Sphere,

Rosenbrock, Griewank, Rastrigrin and Schwefel. Their

theoretical optimal values are all 0 and dimensions are

all assumed as 30.

Table 2: Test function

Function Expression Search scopes
 [-100,100]

[-30,30]

[-600,600]

[-100,100]

[-10,10]

Table 3: The mean value when k = 3

Fun IPPSO PAMPPSO UPPSO UPAMPPSO

f1 1.11 1.39e-5 2.03e-6 4.51e-8

f2 5.65 5.24 3.94 3.56

f3 1.82e-1 8.88e-3 2.47e-2 7.31e-3

f4 4.56 4.48 4.59 4.19

f5 2.64 1.88 8.44e-5 9.81e-6

Table 4: The standard deviation when K = 3

Fun IPPSO PAMPPSO UPPSO UPAMPPSO

f1 2.88 3.07e-5 1.78e-6 3.27e-8

f2 1.22 1.95 0.75 0.78

f3 2.01e-1 6.87e-3 2.88e-2 8.31e-3

f4 3.25 e-1 2.63e-1 3.21e-1 2.64e-1

f5 3.87e-1 1.32 6.70 e-5 8.01e-6

Parameter values: The parameters of four parallel

PSO algorithms are set as follows.

� Parameters for PSO: The linear descending

inertia weight coefficient is within the closed

interval [0.1, 1]. Population size is 40 and the

acceleration coefficient c1, c2 are both taken as 2.

� Parameters for parallel: The migration period T

is 10. In PAMPPSO and UPAMPPSO, when Tno

of the child process is taken as 2, the one-way

communication is forced to carry out. When the

migration periods T are the times of 5, UPPSO,

PAMPPSO and UPAMPPSO will carry out

corresponding operating.

� Parameters for uniform design: The number of

subintervals S is 4 and the number of the sample

points or the population size of each subinterval

Q0 is 17.

� Stopping condition: the maximal generations are

1000.

RESULTS

When the numbers of sub-population K is equal

to 3, the mean value and standard deviation of the

optimal value are shown in Table 3 and 4 and the

convergence processes of the mean value for f1, f2, f3, f4

and, f5 are respectively shown in the left Fig. 2 to 6.

When K = 5, the mean value and standard deviation of

the optimal value are shown in Table 5 and 6 and the

convergence processes of the mean value for f1,f2, f3, f4

and ,f5 are respectively shown in the right Fig. 2 to 6.

∑
=

=
n

i
ixf

1

2

1

()[]∑
−

=
+ −+−=

1

1

222

12 1)(100
n

i
iii xxxf

1)cos(
4000

1

11

2

3 +−= ∏∑
== i

f x
x i

n

i

n

i
i

]10)2cos(10
1

2

4 [+−= ∑
=

i

n

i
i

xf x π

xx i

n

i

n

i
i

f ∏∑
==

+=
11

5

Res. J. Appl. Sci. Eng. Technol., 5(8): 2576-2585, 2013

2582

(a)

(b)

Fig. 2: The convergence process of the mean value for f1

(a)

(b)

Fig. 3: The convergence process of the mean value for f2

(a)

(b)

Fig. 4: The convergence process of the mean value for f3

(a)

(b)

Fig. 5: The convergence process of the mean value for f4

0

2

4

6

8

10

12

100 200 300 400 500 600 700 800 900 1000
Iterations

F
u
n

c
ti

o
n

 v
al

u
e
 (

lo
g
)

IPPSO
PAMPPSO
UPPSO
UPAMPPSO

0

2

4

6

8

10

12

100 200 300 400 500 600 700 800 900 1000
Iterations

F
u

n
c
ti

o
n

 v
a
lu

e
 (

lo
g

)

IPPSO
PAMPPSO
UPPSO
UPAMPPSO

2

4

20

100 200 300 400 500 600 700 800 900 1000
Iterations

F
u

n
c
ti

o
n

 v
a
lu

e
 (

lo
g

)

IPPSO
PAMPPSO
UPPSO
UPAMPPSO

6

8

10

12

14

16

18

2

4

20

100 200 300 400 500 600 700 800 900 1000
Iterations

F
u

n
c
ti

o
n

 v
a
lu

e
 (

lo
g

)

IPPSO
PAMPPSO
UPPSO
UPAMPPSO

6

8

10

12

14

16

18

0
100 200 300 400 500 600 700 800 900 1000

Iterations

F
u
n

c
ti

o
n

 v
a
lu

e
(l

o
g
)

IPPSO
PAMPPSO
UPPSO
UPAMPPSO

2

3

4

 5

 6

 7

0
100 200 300 400 500 600 700 800 900 1000

Iterations

F
u
n

c
ti

o
n

 v
a
lu

e
(l

o
g
)

IPPSO
PAMPPSO
UPPSO
UPAMPPSO

2

3

4

 5

 6

 7

100 200 300 400 500 600 700 800 900 1000
4

5

6

7

8

9

10

11

12

Iterations

F
u

n
ct

io
n

 v
al

u
e

(l
o
g

)

IPPSO
PAMPPSO
UPPSO
UPAMPPSO

100 200 300 400 500 600 700 800 900 1000
3

4

5

6

7

8

9

10

11

12

Iterations

F
u

n
ct

io
n

 v
al

u
e

(l
o
g

)

IPPSO
PAMPPSO
UPPSO
UPAMPPSO

Res. J. Appl. Sci. Eng. Technol., 5(8): 2576-2585, 2013

2583

(a)

(b)

Fig. 6: The convergence process of the mean value for f5

Table 5: The mean value when K = 5

Fun IPPSO PAMPPSO UPPSO UPAMPPSO

f1 2.27 1.50e-4 2.14e-5 2.46e-7

f2 6.63 5.95 3.43 3.25

f3 7.02e-1 2.11e-2 1.27e-1 1.21e-2

f4 5.21 4.47 4.69 3.85

f5 3.01 1.84 1.41e-3 1845e-4

Table 6: The standard deviation when K = 5

Fun IPPSO PAMPPSO UPPSO UPAMPPSO

f1 1.02 3.07e-4 1.82e-5 5.20e-7

f2 7.99e-1 1.17 1.27e-1 1.05

f3 1.83e-1 1.94e-2 7.58e-2 1.82e-2

f4 2.39e-1 3.39e-1 1.63e-1 3.83e-1

f5 3.11e-1 1.34 5.24e-4 1.66e-4

From Table 3 and 5, we can see that since the

numbers of sub-population is 3 and 5 respectively, so

the items in Table 5 converge more slowly than those in

Table 3. This reason is that the more the number of sub-

populations is, the less number of particles within each

sub-population is and the fewer the opportunities for

learning from each other within the sub-population are.

In the migration cycle, each particle is impacted by the

local optimal solution rather than the global optimal

solution within its associated sub-population. Only

when migration cycle is reached, information may be

exchanged each other to obtain the global optimal

solution. However, the particles among various sub-

populations can not exchange information within the

migration cycle. That is to say, the more the number of

sub-populations is, the slower the convergence speed is

and the easier to avoid premature convergence.

The proposed algorithm compared with IPPSO,

there are much improvement on the f1 ~ f5, as shown in

Table 3 to 4 and Fig. 2 to 6.

For f1, the mean value of in Table 3 decreases by 8

orders of magnitude and that in Table 5 decreases by 7

orders of magnitude. The standard deviation is similar

to the mean value. Figure 2a shows that the proposed

algorithm inclines more quickly than IPPSO, especially

in later periods of iterations. In Fig. 2a, the curve of the

proposed algorithm is always below that of IPPSO and

is almost parallel after 800 iterations. In Fig. 2b, there

are a little difference after 20 iterations, apparent

difference after 80 iterations and almost parallel after

700 iterations between the curves of the proposed

algorithm and IPPSO.

For f2, Table 3 and 4 show that the mean value and

the standard deviation of the proposed algorithm are

both better than in IPPSO, Table 5 is similar to Table 3.

In Fig. 3a,b, there is distinct difference on the curve of

the proposed algorithm compared with that of IPPSO

after 50 iterations and almost parallel after 700

iterations.

There is a little similar in the mean value f3

compared with f1.The mean value of the proposed

algorithm in Table 3 decreases by 2 orders of magnitude

and that in Table 5 decreases by 1 order of magnitude.

In Table 4 and 6, the variations of the standard

deviation are similar to those of the mean value. In the

Fig. 4a, there is distinct difference on the curve of the

proposed algorithm compared with that of IPPSO after

100 iterations and almost parallel after 850 iterations. In

Fig. 4b, there are apparent difference after 50 iterations

and almost parallel after 800 iterations.

The results of f4 are similar to that of f2 in Table 3

and 5. The mean value and the standard deviation of the

proposed algorithm are both significantly smaller than

those of IPPSO. In Fig. 5a, there is distinct difference

on the curve of the proposed algorithm compared with

that of IPPSO after 100 iterations and almost parallel

after 850 iterations. In Fig. 5b, there are apparent

difference after 50 iterations and almost parallel after

800 iterations.

For f5, the mean value of the proposed algorithm in

Table 3 decreases by 6 orders of magnitude and that in

Table 5 decreases by 4 orders of magnitude. The

standard deviation of the proposed algorithm in Table 4

decreases by 5 orders of magnitude and that in Table 4

decreases by 3 orders of magnitude.

In Fig. 6a, there is distinct difference on the curve

of the proposed algorithm compared with that of IPPSO

after 450 iterations and almost parallel after 700

iterations. In Fig. 6b, there are apparent difference after

500 iterations and almost parallel after 700 iterations.

0

5

25

30

100 200 300 400 500 600 700 800 900 1000
Iterations

F
u
n

c
ti

o
n

 v
al

u
e
 (

lo
g
)

IPPSO
PAMPPSO
UPPSO
UPAMPPSO

20

15

10

0

5

25

30

100 200 300 400 500 600 700 800 900 1000
Iterations

F
u
n

c
ti

o
n

 v
al

u
e
 (

lo
g
)

IPPSO
PAMPPSO
UPPSO
UPAMPPSO

20

15

10

Res. J. Appl. Sci. Eng. Technol., 5(8): 2576-2585, 2013

2584

Table 7: The statistical value in different dimension

Dim. IPPSO PAMPPSO UPPSO UPAMPPSO

10 1.5721e-13 2.2204e-16 2.2204e-16 2.2204e-16

20 9.8645e-6 2.8209e-7 7.2922e-8 5.9779e-9

30 2.6418 1.8796 8.4421e-5 9.8139e-6

40 3.4779 2.3869 2.0144e-3 3.3103e-4

50 4.1685 3.3845 1.2108e-2 4.5766e-3

60 4.4364 3.7610 3.8842e-1 7.7851e-2

70 4.7911 4.0950 2.8510e-1 2.1207e-1

80 4.9808 4.8673 1.0999 2.3619e-1

90 5.2878 4.7461 1.6481 9.0177e-1

100 5.3292 5.2586 2.7576 2.5298

Fig. 7: The mean value versus the dimension

From the abovementioned simulations results, a

conclusion can be drawn that the proposed algorithm is

much more stable than IPPSO and its rate of

convergence is much faster than IPPSO.

Influence of dimension: In order to find out the

influence of dimension, we carry out an experiment as

follows. The dimension respectively is 10, 20, 30, 40,

50, 60, 70, 80, 90, 100 and other conditions keep

unchanged. The test function f5, namely Schwefel, is

iterated 1000 time and independently carried out 30

runs to get its mean value. The final outputs are shown

in Table 7. We assume the dimension as x axis, the

mean value as y axis and the final curve figure is shown

in Fig. 7.

Table 7 and Fig. 7 both show that the mean values

of several algorithms both increase with increasing in

dimension. However, the curve of UPAMPPSO in Fig.7

lies always in below that of the others and the mean

value of UPAMPPSO is always the smallest in Table 7,

which just indicates the proposed algorithm is superior

to the others. Furthermore, this also indicates that the

dimension has no influence on the performance of the

proposed algorithm.

Influence of Q0 and S in uniform design: In order to

find out the influence of Q0 and S in the uniform design,

we carry out an experiment as follows. The test

function f4 with dimension of 30 and f5 with dimension

of 50 is respectively iterated 1000 time using UPPSO

and independently carried out 30 runs to get its mean

Table 8: The statistical value

Q0 f4, S = 8 f4, S = 16 f4, S = 32 f5, S = 8 f5, S = 16 f5, S = 32

5 4.0 4.5 4.2 8.6e-2 3.3e-2 1.1e-2

7 4.9 4.8 3.8 4.9e-2 6.7e-2 1.2e-2

11 4.3 4.8 4.5 3.0e-2 3.2e-1 1.1e-2

13 4.5 4.3 4.3 6.0e-3 8.8e-3 1.9e-3

17 3.9 3.8 4.8 2.0e-2 8.3e-3 6. 6e-3

19 10.3 10.3 10.3 4.1 4.1 4.1

23 9.9 9.9 9.9 3.7 3.7 3.7

29 11.7 11.7 11.7 5.2 5.1 5.1

31 11.7 11.7 11.7 5.3 5.1 5.1

Fig. 8: The mean value of f4 amd f5 with different Q0 and S

value. The final outputs are shown in Table 8. We
assume Q0 as x axis, the mean value as y axis and the
final curve figure is shown in Fig. 8.

From Table 8 and Fig. 8, we can see that its mean
values when Q0 = 5, 7, 11, 13 and 17 are greatly
superior to those when Q0 = 19, 23, 29 and 31. This can
guide how to choose the parameters Q0. At meanwhile,
for the same function, when Q0 is kept unchanged, the
function values of different S are close to each other.
This indicates that the influence of S is far fewer
compared with Q0, therefore, the influence of S may be
ignored in the uniform design. A good Q0 greatly
influence the performance of the uniform design,
therefore, it is urgent how to choose a good Q0. From
Table 8 and Fig. 8, we can also see that the mean values
when Q0 = 5, 7, 11, 13 and 17 have little difference;
therefore, any of them can be taken a good Q0.

CONCLUSION

From Thoughts of the algorithm and simulation,

we can see the effects of the proposed algorithm are

better than those of IPPSO and closer to the theoretical

optimal value. The proposed algorithm increases re-

clustering when migration cycle has reached a certain

value, but the improvement of algorithm performance is

very obvious. This shows that when the position and

speed have varied re-clustering is very necessary for a

certain time. Meanwhile, uniform design has great

influence on the improvement of algorithm

performance. The simulation results just confirm this

conclusion.
From another point of view, a crude search is

needed in the iterating early period and a fine search is
needed in the iterating later period. Similar particles are

0

2

4

6

8

10

12

10 15 20 25 30 35
Iterations

F
u
n

c
ti

o
n

 v
a
lu

e
(l

o
g

)

f4, S = 8
f4, S = 16

5

f4, S = 32
f5, S = 8
f5, S = 16
f5, S = 32

0

1

5

6

10 20 30 40 50 60 70 80 90 100
Iterations

F
u
n

c
ti

o
n

 v
al

u
e
 (

lo
g
)

IPPSO
PAMPPSO
UPPSO
UPAMPPSO

4

3

2

Res. J. Appl. Sci. Eng. Technol., 5(8): 2576-2585, 2013

2585

clustered together and easier to learn from each other
by PAM. Namely, PAM carry out the function of a fine
search. Meanwhile, the uniform design can carry out
the function of the crude search. The combination of the
two methods just serves as the combination of the crude
search and the fine search, therefore, the proposed
algorithm certainly outperform IPPSO algorithm.

ACKNOWLEDGMENT

This study is supported by the National Natural
Science Foundation of China (No.61272119,
No.61203372). Ph.D. Programs Foundation of Ministry
of Education of China (No.20090203110005). The
Fundamental Research Funds for the Central
Universities (No. K50510030014).

REFERENCES

Antonio, L.J. and A. Carlos, 2007. Coello Coello.

MRMOGA: A new parallel multi-objective
evolutionary algorithm based on the use of multiple
resolutions. Concurr. Comput. Pract. Exp., 19:
397-441.

Branke, J., T. Kaußler, C. Schmidth and H. Schmeck,
2000. A multi-population approach to dynamic
optimization problems. Proceeding 4th
International Conference on Adaptive Computing
in Design and Manufacturing, pp: 299-308.

Chatterjee, A. and P. Siarry, 2004. Nonlinear Inertia
weight variation for dynamic adaptation in particle
swarm optimization. Comp. Oper. Res., 33: 859-
871.

Chen, G., X. Huang, J. Jia and Z. Min, 2006. Natural
exponential lnertia weight strategy in particle
swarm optimization. Proceedings of the 6th World
Congress on Intelligent Control and Automation,
pp: 3672-3675.

Clerc, M. and J. Kennedy, 2002. The particle swarm:
Explosion,stability and convergence in a multi-
dimensional complex space. IEEE Trans. Evol.
Comput., 6: 58-73.

Dudy, L., O. Yew-Soon, J. Yaochu, S. Bernhard and L.
Bu-Sung, 2007. Efficient hierarchical parallel
genetic algorithms using grid computing. Future
Gen. Comp. Syst., 23: 658-670.

Eberhart, R. and J. Kennedy, 1995. A new Optimizer
using particle swarm theory. Proceedings of 6th
International Symposium Micro Machine and
Human Science, pp: 39-43.

Jiang, C.W., B. Etorre and J. Jiang, 2005. A self-
adaptive chaotic particle swarm algorithm for short
term hydroelectric system scheduling in
deregulated environment. Energy Conv. Manag.,
46: 2689-2696.

Jiawei, H. and K. Micheline, 2005. Data Mining:
Concepts and Techniques. Elsevier Inc., Oxford,
UK, pp: 402-403.

Jie, Z., Y. Yajuan and Z. Quanju, 2009. The particle
swarm optimization algorithm based on dynamic
chaotic perturbations and its application to K-
means. International Conference on Computational
Intelligence and Security (CIS), Beijing, China, pp:
282-286.

Kennedy, J. and R. Eberhart, 1995. Particle swarm
optimization. Proceedings of IEEE International
Conference on Neutral Networks, pp: 1942-1948.

Leung, Y.W. and Y. Wang, 2000. Multiobjective
programming using uniform design and genetic
algorithm. IEEE Trans. Syst. Man Cy. C, 30: 293-
304.

Parrott, D. and X. Li, 2004. A particle swarm model for
tracking multiple peaks in a dynamic environment
using speciation. Proceeding of the IEEE Congress
on Evolutionary Computation, pp: 98-103.

Shi, Y. and R. Eberhart, 1999. Empirical study of
particle swarm optimization. Proceedings of the
IEEE Congress on Evolution Computation,
Piscataway, NJ, pp: 1945-1950.

Xue-Yao, G., S. Li-Quan, Z. Chun-Xiang and Y. Shou-
Ang, 2008. A modified particle swarm
optimization algorithm based on improved chaos
search strategy. International Symposium on
Computational Intelligence and Design, pp; 331-
335.

Yaoyao, H., Z. Jianzhong, L. Chaoshun, J. Yang and
Q. Li, 2008. A precise chaotic particle swarm
optimization algorithm based on improved tent
map. 4th International Confernce on Natural
Computation, pp: 569 -573.

Yong, F., T. Gui-Fa, W. Ai-Xin and Y. Yong-Mei,
2007a. Inertia weight in particle swarm
optimization. 2nd International Conference on
Innovative Computing, Information and Control,
pp: 475-478

Yong, F., T. Gui-Fa, Y. Yong-Mei and W. Ai-Xin,
2007b. Comparing with chaotic inertia weights in
particle swarm optimization. Proceedings of the 6h
International Conference on Machine Learning and
Cybernetics, pp: 329-333.

Zeng, S., H. De Garis, J. He and L. Kang, 2005. A
novel evolutionary algorithm based on an
orthogonal design for dynamic optimization
problems. Proceeding of the 2005 IEEE Congress
on Evol, Comput., 2: 1188-1195.

Zhang, X., S. Wen and H. Li, 2005. A novel particle
swarm optimization algorithm with self-adaptive
inertia weight. Proceedings of the 24th Chinese
Control Conference, Guangzhou, P.R. China, pp:
1373-1376.

Zhenglei, Y., Y. Liliang, W. Yaohua, L. Liao and G.
Li, 2007. Chaotic particle swarm optimization
algorithm for traveling salesman problem.
Proceedings of the IEEE International Conferenc
on Automation and Logistics, pp: 1121-1124.

