
Research Journal of Applied Sciences, Engineering and Technology 5(7): 2384-2391, 2013

DOI:10.19026/rjaset.5.4669

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: July 26, 2012 Accepted: September 03, 2012 Published: March 11, 2013

Corresponding Author: Aqun Zhao, School of Computer and Information Technology, Beijing Jiaotong University, Beijing

100044, China
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

2384

Research Article
Terminal Design in Vector Network based on Windows Platform

1
Aqun Zhao,

2
Yi Lu,

3
Yongnan Weng

1
School of Computer and Information Technology, Beijing

Jiaotong University, Beijing, 100044, China
2, 3
Beijing Subway Operation Technology Centre, Beijing, 100082, China

Abstract: The research work of this study focuses on the design and implementation technology of terminal in
Vector Network (VN) based indows platform. The VN is a kind of new communication network with vector address
as the switching adon Wdress. The premise of successful deployment of VN is its integration with the current IP
networks, so it is necessary to study the implementation technology of VN terminal on the base of IP terminal.
Firstly, a kind of software implementation method of VN terminal and a kind of integration method of VN and IP
networks named “IP over VN” were proposed in this study. Secondly, the VN driver module was designed and
implemented based on the NDIS driver interface and the key technique in the implementation was summarized.
Finally, the experiment network was built to test the functions of VN terminal. The test results validated the
rationality of the design and implementation scheme of VN terminal. The work of this study establishes the
foundation for the deployment of VN and provides an example to the development of similar systems.

Keywords: IP over VN, NDIS driver, vector network, VN terminal

INTRODUCTION

With the extensive application of information

technology, Internet has became the indispensable tool
for people working and living, rather than a special
experiment network only. Now communication
networks including telecommunication network and
Internet can no longer satisfy people’s information
communication demands for multimedia, broadband
access, mobility, personalization and intelligent, which
brings about the Next Generation Network. In recent
years, research institutes both at home and abroad has
started the study of Next Generation Network one after
another. For example, GENI (2011) and NetSE (CCC,
2011) in America, FIRE (CORDIS, 2011) in European
Union, AKARI (2011) in Japan, FGFN (ITU-T, 2011)
of ITU-T and the universal network and Pervasive
Services (Li et al., 2010) in China.

Vector Network (VN) is a try in this background.
Control separated from data, ID separated from locator
and fractal architecture is its features. So it is possible to
implement limitless expansion, security and credibility,
QOS (Quality of Service) and other network demands
based on the architecture of VN. This is a definite
advantage to VN over IP network.

The built of Next Generation Network is a complex
system engineering involving theory of foundations and
engineering innovation. For the extensive application of
IP network, it will be a long time process to design,

deploy and popularize new network architecture.
Therefore, to promote the research and built of Next
Generation Network, we need to base the Next
Generation Network on the existing Internet
infrastructure, adopt an integrate and open method. By
establishing revolutionary new network architecture and
integrating it with IP network, we may promote the
transference of network transaction from Internet to the
new network and finally realize a smooth transition from
IP network to Next Generation Network.

Here we use vector network technology to upgrade
IP network. That is VN is used within a small area and
coexist with IP network in the initial stage. While
making upgrades to IP network, how to change IP
terminal into VN terminal is a problem we should
resolve first. The research work of this study focuses on
the design and implementation technology of terminal in
vector network based on Windows platform, meanwhile,
the key technique in the implementation was
summarized.

VECTOR NETWORK

The authors proposed a new kind of switching

address called vector address (Liang, 2009; Zhao and
Liang, 2012). Different from node-based coding and
link-based coding methods, VA is coded by numbering
the ports of a node machine which can be named port-
based coding method. The network which is constructed

Res. J. Appl. Sci. Eng. Technol., 5(7): 2384-2391, 2013

2385

based on this kind of forwarding address is called vector
network. The forwarding machine in VN is named
Vector Switch (VS). The routing device in VN is called
vector router. Vector switch and vector router composed
the VN route-switch system (Qun and Liang, 2008).

In VN, the ports of an electronic device is

numbered from 1, the number allotted to a port is called

port number. We define a VA from a source node to a

destination node as a sequence of output port numbers

of nodes along a path from the source to the destination.

The port numbers in the sequence look like direction

indicators guiding the packets to arrive at the destination

step by step. This is why this kind of forwarding address

is named VA. Each port number in VA is called element

address. In practice, VA is expressed in binary format.

The digit capacity of an address field is determined by

how many ports the corresponding forwarding device

has. For example, if an electronic device has seven

ports, it will need three bits to describe all the ports.

The following data forwarding method is applied in

VN. When a VS receives a data packet from one of its

input ports, it extracts the first element address of the

VA from the packet, deletes this element address from

the packet and sends the packet to the output port

pointed by this element address.

There are two kinds of vector-packets in VN:

vector-data-packet to carry user data and vector-control-

packet to carry control message. Both the data-packet

and the control-packet include 1 byte of Head which can

be extended to 4 bytes when necessary. The T bit was

included in Head to allow different types of vector-

packet (for example, T = 0 represents a data-packet

while T = 1 represents a control-packet). In vector-data-

packet, Head is followed by VA. VA consists of

padding, flag and some address fields (the length of VA

is variable theoretically, we assume it is 1 byte in the

experiment), Data field follows VA is used to carry the

upper-layer segment to be delivered to the destination.

In vector-control-packet, Head is followed by Cmd field

which is used to differentiate different kinds of control

messages. Signaling field after Cmd field carries

different kinds of control messages.

DESIGN OF VN TERMINAL

Implementation mode: There are two implementation

modes of terminal in vector network: hardware

implementation mode and software implementation

mode. The so-called hardware implementation refers to

linking a vector network terminal gateway device to the

output port of the existing IP end and then IP network

can connect to the vector network router-switch system

via this gateway device. Vector network terminal

gateway device which forms the VN terminal with

Fig. 1: Software implementation of VN terminal

physical IP terminal provides the transformation of

protocols and data formats between IP network and

vector network.

Figure 1 shows the software implementation mode.

In this case, by adding vector network protocols to an

IP terminal, then the IP terminal is physically a host or

server while logically a VN terminal consists of

network protocol stack and vector network protocols.

This method has a lower cost and a better practicality in

comparison to hardware implementation, because we

just add some protocols into the software level rather

than change the physical structure of the host. What’s

more, its flexibility and ease of modification features

enabled us to upgrade some vector network protocols

easily, what we need to do is amending the protocol

software and reinstalling it. Hence, software

implementation mode is much more convenient,

flexible and high-performance.

In this study, we adopted the software

implementation mode. The vector network protocol

software is designed and implemented according to the

functional requirements of the system. Then we

installed the software to IP terminals and upgraded

them to VN terminals. For Windows is one of the

mainstream operating systems and most of the desktop

platforms and business servers all use Windows, so we

chose Windows Operating system as the development

platform.

Integration method: The key point of the

implementation technology of VN terminal on the base

of IP terminal is the design of integration method of VN

and IP networks. An integration method named “IP

over VN” was proposed in this study, in reference to

the fact that IP packet becomes Vector-packet after

being added to a vector network head. Figure 2 shows

the packing and unpacking process of data when using

IP over VN method. At the source host, an application-

layer message is passed to transport layer. In the

simplest case, the transport layer takes the message and

Res. J. Appl. Sci. Eng. Technol., 5(7): 2384-2391, 2013

2386

Fig. 2: IP over VN method

appends transport-layer header information. The

application-layer message and the transport-layer

header information together constitute the transport-

layer segment. The transport layer then passes the

segment to the network layer, which adds IP header

information, creating an IP datagram. The datagram is

then passed to vector network protocol-layer, which

will add VN header information and create a Vector-

packet. Later the packet is passed to the link layer (Here

takes Ethernet for an example), which will add its own

Ethernet header and tail information (Fig. 2 just

illustrates the header information) and create an

Ethernet frame. Then via physical layer the frame is

sent into VN router-switch system, where the switches

forward the data-packet according to its VA in VN

header until to the end host. Once the destination host

receives an Ethernet frame, network adapter will

examine the Ethernet header information of the frame

to identify whether it is a Vector-packet or not. If it is,

then the vector-packet is delivered up to vector network

protocol-layer which will handle VN header

information and pass the IP datagram up to network

layer. The datagram at last is delivered up to application

program after the handling of network layer, transport

layer and application layer in order.

From the packing and unpacking process we can

see that the change of terminals focus on the part

between network layer and link layer. That is, a vector

network protocol-layer is added between the two layers.

By using IP over VN method, IP datagram is

successfully transformed into Vector-packet and this

operation is transparent to users and upper protocols.

Because, in the process of sending and receiving of

data, both encapsulation and handling of application

layer, transport layer and network layer are the same as

before. Therefore, IP over VN method enables IP

terminal just needs a little change to upgrades to VN

terminal, thus, we can accomplish the integration of IP

network and vector network.

Module structure: NDIS is not only able to capture all

the datagram from and to the host but also able to

analyze and change the datagram easily. NDIS driver

interface is the most suitable network driver to cope

with the intercommunication between vector network

protocol layer and link layer and network layer (Wu,

2008). Therefore, NDIS driver is chose to help develop

vector protocol in this study. We treat vector network

protocol software as a NDIS Intermediate Driver and

the implemented software module is named vector

network driver module.

Figure 3 illustrates the relation between vector

network driver module and the driver modules upper

and lower layer. The upper layer, which is used to send-

receive and handle network layer datagram, corresponds

to NDIS Protocol Driver; The lower layer corresponds

to NDIS Miniport Driver, its job is to accomplish

sending-receiving and handling of link layer frame via

network adapter.

Vector network driver module mainly consists of

protocol driver receiving thread and Micro port driver

sending thread. When Micro port driver module at the

lower layer receives a data frame, its receiving thread

will handle the frame and then deliver the data of the

frame (vector-packet) up to the protocol driver receiving

thread of vector network driver module, Which will call

the user-defined de-packetize function to analyze the

type and content of the packet, then removes the VN

head, creating a new datagram (IP datagram). The

datagram is then delivered up to the receiving thread of

the upper layer protocol driver module. Upper layer

Res. J. Appl. Sci. Eng. Technol., 5(7): 2384-2391, 2013

2387

Fig. 3: Module structure of VN terminal

protocol driver module calls its sending thread to handle

the incoming datagram and then passes the data (IP

datagram) to Micro port driver sending thread of vector

network driver module, which will call the user-defined

packaging function to append VN head and create a new

packet (vector-packet), then the new packet will be

passed to the sending thread of the lower layer Micro

port driver module.

In addition, the receiving and sending end function

are also two very important functions to vector network

driver module. After the receiving thread receives the

incoming datagram completely, the upper layer protocol

driver module will call its receiving end function to

carry out subsequent operations, for example, release the

system resource that no longer needed. Similarly, the

lower layer Micro port will call its sending end function

to carry out subsequent operations when the sending

thread has finished its work.

KEY TECHNIQUES

In this study, we chose Visual Studio 6.0 (GAO

et al., 2007), Windows 2003 Server SP1 DDK

(Microsoft, 2005) and Driver Studio 3.2 (Compuware,

2009) as the tools to develop NDIS Intermediate Driver.

Packets identification and classification: When a

frame arrives at a network adapter, the adapter needs to

know to which upper layer protocol it should pass the

contents of the data field. Ethernet frame use a type field

to distinguish a datagram from others. For example, if

the type number is 0x0800, then we know that the

content of the data field is an IP datagram which should

be delivered up to IP protocol. In order to support vector

network, we give the definition that the type number of

vector network protocol is 0x0810:

#include <hash_map>

typedef hash_map<ULONG, USHORT, hash<

ULONG>, equal_to<ULONG>, non_paged_alloc>

Map

typedef hash_map<ULONG, USHORT, hash<

ULONG>, equal_to<ULONG>,

non_paged_alloc>::iterator Iter

Map m_info

The process of packet identification and

classification is shown in Fig. 4. Network adapter reads

the type field of the incoming data frame and decides to

which protocol it should pass. If type number is 0x0810,

then the datagram will be delivered to vector network

driver module, which reads VN header to know whether

it is a vector-data-packet (T = 0) or vector-control-

packet (T = 1). If the former, then the VA field will be

checked, null indicates that it is the right data packet

whose destination is the host. Or else, the data packet

should be abandoned for it arrived at a wrong place. As

to the latter, we should check its Cmd field further and

carry out the control function according to the type of

the data packet.

Datasheet storage and update: Because there are many

tables to store a variety of information, we chose C++

STL standardized template library to implement

information storage, and accomplished the function of

handling regularly and refreshing of the data by using

class KNdisTimer provided by Driver Studio.

Taking the storage of “destination IP Address, VA”

for an example, the saving and querying of the

destination IP Address at terminals are very frequent, so

we could treat IP Address as the key and use map

template to implement the mapping from IP Address to

VA. Using the tree search method makes map template

has a low efficiency when it comes to a large scale of

data, while hash_map which uses hash function search

method is much faster in comparison with map.

Therefore, we decided to use hash_map to store

information. The relevant code as follows:

Res. J. Appl. Sci. Eng. Technol., 5(7): 2384-2391, 2013

2388

Fig. 4: The process of packet identification and classification

#include <hash_map>

typedef hash_map<ULONG, USHORT, hash<

ULONG >, equal_to< ULONG>, non_paged_alloc>

Map

typedef hash_map<ULONG, USHORT, hash<ULONG

>, equal_to<ULONG>,

non_paged_alloc>::iterator Iter

Map m_info

As described above, IP Address is stored in

ULONG type and serves as the key of hash_map, while

VA which is the value of hash_map is stored in

USHORT type. Besides, we defined a iterator which is

used to traverse hash_map. In order to examine

hash_map regularly and delete the item whose value is

null, we made use of class KNdisTimer provided by

Driver Studio, and add the code as follows in the class

when its member variables were defined:

KNdisTimer m_Timer

KNDIS-DECLARE-TIMERCALLBACK

(StlFilterAdapter, Timeout)

void Timeout ()

We used callback function register statement to

assign the callback function of KNdisTimer in the

driver, so that function Timeout could be callback when

time arrives and the program can carry out preset

operations. For example, the program could refresh data

items regularly once the refresh task is added in

function Timeout.

Construction of data packets: Vector network driver

module uses IP over VN method to add VN header to

the incoming IP datagram, creating user-defined data

packet inherits from IP datagram and implement caching

and queuing function by using data packet queue

technology. To construct data packet, we used the class

KNdisPacket and KNdisBuffer, while class

KNdisBufferHeap and KNdisFilterPacketPool as the

auxiliary classes. The relevant code as follows:

Typedef KNdisFilterPacketPool<PacketContext,

true>CTxPool

typedef KNdisFilterPacketPool<PacketContext, false>

CRxPool

KNdisBufferHeap m_BufferHeap

Res. J. Appl. Sci. Eng. Technol., 5(7): 2384-2391, 2013

2389

CTxPool m_TxPool

CRxPool m_RxPool

The constructed user-defined data packets then join

dispatcher queue waiting for their turn to be sent. We

used class KNdisInterlockedPacketList defined by

Driver Studio as the queue container. The relevant code

as follows:

KNdisInterlockedPacketList m_SendDelayQ;

KNdisInterlockedPacketList m_ReceiveDelayQ;

m_SendDelayQ (BOOLEAN(FALSE));

m_ReceiveDelayQ (BOOLEAN(TRUE));

Maximum transmission unit and network byte order

processing: Maximum Transmission Unit refers to the

max size of the datagram that communication protocol

allowed. MTU of Ethernet is 1500 Bytes, which means

that once the size of IP datagram is larger than 1500

Bytes, IP datagram will be fragmented into several small

datagram’s. Add VN header to IP datagram may result

in the size of Vector-packet exceeds the limit of MTU

and so causes error. To solve the problem above, we

change changed the size of MTU to 1480 Bytes which is

the new standard for fragmentation of IP datagram,

reserving 20 Bytes for VN header. We change MTU in

Windows registry to 1480 Bytes when we install vector

network driver module and recover it as we uninstall

vector network driver module.

The store order of data that is larger than 1 Byte in

size in memory is called byte order. Byte order is

different according CPU types, so byte order is also

named host byte order. Little endian and Big endian are

two Common types. The former treats the low-order

byte as starting address; on the contrary, the latter treats

the high-order byte as starting address. CPU of X86

series uses little-endian byte order. Network byte order

is a kind of description format of data that TCP/IP

protocol requires, which has nothing to do with CPU

type and OS and applies big-endian form. As the above

shows, host byte order is different from that of network,

so it necessary to implement conversion operations in

VN terminal. We defined four Macros to do it. The

relevant code as follows:

#define HTONS(x)((((x)>>8)&0xff) |(((x)&0xff)<<8))

#define NTOHS(x) HTONS (x)

#define HTONL(x)

((((x)>>24)&0xff)|(((x)&0xff)<<24)|

(((x)&0xff0000)>>8) | (((x)&0xff00)<<8))

#define NTOHL(x) HTONL(x)

EXPERIMENTS

In order to test the functions of VN terminal, the

experiment network which consists of VN terminals and

VN router-switch system was built (Fig. 5). Each of

subnet 192.168.10.0/24 and 192.168.20.0/24 has two

VN terminals which run on Windows XP operating

system and have vector network driver module installed.

Router-switch system consists of two NA820 switch,

named A and B respectively, each running vector

network router-switch protocol and runs on Linux

operating system. Both A and B have seven ports, but

only one to three of them were used.

Fig. 5: Topology of the experiment network

Res. J. Appl. Sci. Eng. Technol., 5(7): 2384-2391, 2013

2390

Fig. 6: The data of A.1

Fig. 7: The data of B.2

VN terminal B.2 was treated as a server, opening

www service. A1 as a client accessed B.2 for www

pages via browser. The process of data packet switching

was monitored by a kind of Kernel monitoring software

called Debug View. Test result shows that the browser

of A.1 could display www page normally and parts of

the monitoring data are showed in Fig. 6.

In the screenshot of A.1 in Fig. 6, “On Send 80

bytes” means the size of data frame we sent was 80

bytes which contains 14 bytes of Ethernet header (each

of source and destination MAC address occupies 6

bytes, the value of protocol type is 0x0810), 2 bytes of

VN header (the value of Head field is 0x42, T = 0

indicates it’s a vector-packet, VA:0x5A) and 64 bytes of

IP datagram (20 bytes of IP header and 44 of TCP

message). We also can see that host output port number

has been deleted from VA, remaining 01011010, in

which the first 1 is a tag followed by effective address.

As to A and B both have 7 ports, so they need 3 bits to

number all their ports. Therefore, the last two hops are

011 and 101 (3 and 2), which correspond to the output

ports of A and B respectively.

Figure 7 shows the monitoring data of B.2. “On

Receive 80 bytes” indicates the incoming data packet is

80 bytes in length. Note that, in the 2 bytes of VN

header, the value 0x42 of Head field is same to that

when the packet was sent. “VA: 0x01” means there is no

address left, that is the packet received its destination.

CONCLUSION

By building the experiment network and functions

test, this study validated the rationality of the design and

implementation scheme of VN terminal, the availability

of the integration method of VN and IP networks named

“IP over VN” and the correctness of vector network

Res. J. Appl. Sci. Eng. Technol., 5(7): 2384-2391, 2013

2391

driver module. The work of this study establishes the

foundation for the deployment of VN and provides an

example to the development of similar systems. The

future work will focus on implementing the function of

VN control plane and the function performance

experiment in large scale network environment.

ACKNOWLEDGMENT

This study was supported by the Fundamental

Research Funds for the Central Universities (No.

2012JBM025) and in part by the Open Research Fund

from Key Laboratory of Computer Network and

Information Integration in Southeast University,

Ministry of Education, China (No. K93-9-2010-08).

REFERENCES

AKARI, 2011. AKARI Architecture Design Project for

New Generation Network. Retrieved from:

http://akari-project.nict.go.jp/eng/index2.htm.

CCC, 2011. Network Science and Engineering (NetSE).

Retrieved from: www.cra.org/ccc/netse.php.

Compuware, 2009. Driver Studio. Version: 3.2,

Compuware Corporation Online Document.

CORDIS, 2011. FIRE- Future Internet Research and

Experimentation. Retrieved from: http:// cordis.

europa.eu/fp7/ict/fire/.

Gao, S.C., Y.M. Nie and J. Zheng, 2007. Visual C 6.0

Development Guide. Posts and Telecom Press,

Beijing, China.

GENI, 2011. Exploring Networks of the Future.

Retrieved from: http://www.geni.net/.

ITU-T, 2011. FGFN-Focus Group on Future Network.

Retrieved from: http://www.itu.int/en/ITU-T/

focusgroups/fn/Pages/Default.aspx.

Li, S.Y., Y.J. Qin and H.K. Zhang, 2010. Mapping

model for the service layer of universal network

based on network utility maximization. Acta

Electron. Sin., 38(2): 282-289.

Liang, M.G., 2009. A Method for Vector Network

Address Coding. China Patent,

ZL200610089302.6.

Microsoft, 2005. Windows DDK (Driver Development

Kit) Version: Server 2003 SP1. Microsoft

Corporation Online Document.

Qun, Z.A. and M.G. Liang, 2008. A new mobile

network architecture. International Symposium on

Computer Science and Computational Technology,

Beijing, China, pp: 686-689.

Wu, G.Y., 2008. Computer Network Advanced

Software Programming Technology. Tsinghua

University Press, Beijing, China.

Zhao, A.Q. and M.G. Liang, 2012. A new forwarding

address for next generation networks. J. Zhejiang

Univ., Sci. C, 13(1): 1-10.

