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Abstract: In this study, we propose the least disturbance algorithm adding scale factor and shift factor. The dynamic
learning ratio can be calculated to minimize the scale factor and shift factor of wavelet function and the variation of
net weights and the algorithm improve the stability and the convergence of wavelet neural network. It was applied to
build the dynamical model of autonomous underwater vehicles and the residuals are generated by comparing the
outputs of the dynamical model with the real state values in the condition of thruster fault. Fault detection rules are
distilled by residual analysis to execute thruster fault diagnosis. The results of simulation prove the effectiveness.
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INTRODUCTION

With the development of the activities in deep
ocean, the application of underwater vehicles is
widespread (Xu and Xiao, 2007; Blidberg, 1991).
Underwater vehicles are frequently performing mission
in unstructured, complicated and hazardous environment
(Adam, 1985). For autonomous underwater vehicles, the
ability to detect and tolerate fault is a crucial issue to
realize its autonomy. Model-based technique has the
merits such as low cost, high reliability and easy
realization for autonomous underwater vehicles, so it is
a suitable approach. However, for the influence of
model error, measurement noise, outer disturbance and
so on, it is difficult enogh to build up the accurate model
for autonomous underwater vehicles. Neural network
has the characters of strong input-output nonlinear
mapping, distributed store of information, parallel
process and especially strong self-organizing and self-
learning ability, which make neural network become an
effective method for fault diagnosis. Moreover, it has
been applied in practice (Alessandri et al., 1999).

Wavelet neural network is a new radial basis
function neural network developed from wavelet
transform. The orthonormality of wavelet function used
as the hidden layer function makes wavelet neural
network more suitable in learning function of local
variation and discontinuities. By adjusting scale factor
and shift factor of wavelet function and weights of
network to affect output of network, wavelet neural
network has strong ability of distilling signal details and
mapping nonlinear function (Li and Wei, 1998; Zhao
and Zhou, 2003). In this study, we propose a least
disturbance wavelet neural network to build up the

dynamic model of underwater vehicles and add scale
factor and shift factor of wavelet function to dynamic
learning rate algorithm based on steepest descent
method. Then, we compare the output of model with the
real state value to achieve residuals and distill the fault
information from the residuals to detect fault.

In this study, we propose the least disturbance
algorithm adding scale factor and shift factor. The
dynamic learning ratio can be calculated to minimize the
scale factor and shift factor of wavelet function and the
variation of net weights and the algorithm improve the
stability and the convergence of wavelet neural network.
It was applied to build the dynamical model of
autonomous underwater vehicles and the residuals are
generated by comparing the outputs of the dynamical
model with the real state values in the condition of
thruster fault. Fault detection rules are distilled by
residual analysis to execute thruster fault diagnosis. The
results of simulation prove the effectiveness.

LEAST DISTURBANCE WAVELET
NEURAL NETWORK

The common training algorithm of wavelet neural
network is steepest descent method and learning rate is
extremely significant for the convergence and stability
of ¢ network. The hidden layer function of wavelet
neural network is wavelet function and its scale factor
and shift factor are also adjusted to minimize the least
square error. For wavelet neural network, outputs of
neural network are affected by both net weights and
scale factor and shift factor of wavelet function. From
the perspective, we add scale factor and shift factor of
wavelet function to the least disturbance dynamic
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learning rate algorithm based on steepest descent
method (Liu et al., 2001).

Define the input-output relationship of wavelet
neural network as:

Yi :ZWi(jl)hi (1)
]
hj:f((netj—bj)/aj) 2)
net; = > wix, 3)
k

The error function is given by:

E:%Z(di_yi)z “)

where, y; is the ith component of an output vector and h;
denotes the output of jth wavelet in hidden layer and net;
denotes the input of jth wavelet in hidden layer, Xy is the
kth component of input vector. d; is the ith desired target
output. aj, b; is scale factor and shift factor of wavelet
function in hidden layer.

Make difference operation for (4) as follows:
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If we make AE = - E through the modifying

weight, input-output relationship will satisfy the need of
the goal function. However, owing to first-order
approximation of the difference operation; there will be
errors for nonlinear neural network and it is very hard
to get AE = - E through once modification, so 1 is

introduced which is usually given by 0< 1 < 1. AE. is
defined as:

AE = -nE =-Q (6)

where 1 has the same meaning as the training ratio of
the steepest descent method, but the higher certainty is
obtained compared with the standard steepest descent
method. If the training ratio is selected in the adjacent
area of 1, the similar results can be obtained. From (5)
and (6), the variation of net weights can be described
as:
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The solution of (7) is indefinite, namely, there are
infinite appropriate solutions. To obtain the definite
solution condition, we construct a performance
function:

1= sy Lo oy Loz oy Lo ®
ij 2 ik 2 i 2 j 2

The significance to minimize the performance
function is to adjust net weights and scale factor and
shift factor of wavelet neural network as small as
possible and make the current error be zero. The
smaller the adjustable value is, the less the disturbance
of the previous learning knowledge would be.
Therefore, the performance function is called least
disturbance function. The equivalent expression of (7)
is:
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where, A is an unknown coefficient. We can use
Lagrange extreme value theory to get the solution
which satisfies (7) and minimizes J. The algorithm in
detail is as follows. To make the derivative of the
weight modified value be zero, we can obtain:

0J
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(10) to (13) can be rewritten as:
AW =5 (d; - y;)h; =280 h, (14)

AW =Y (d -y ) 7y £ (et ) =287% 73, (15)
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Substituting (14), (15), (16) and (17) into (7):
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Substituting (20) into (14), (15), (16) and (17), we
can obtain the suitable variation of net weights, scale
factor and shift factor. Considering when error
approaches zero, the numerator and denominator of
(20) will both approach zero, we add a small value € >
0 into the denominator, then we can obtain:
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The variation of net weights, scale factor and shift
factor also use steepest descent method, but since A will
change timely with the current state and the current
input of the system, it will be of benefit to the
convergence and robustness of the network. From (21),
we can conclude that this change will lead to that the
reducing of error is always at the suitable level which is
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Fig. 1: Effect of trained network in two methods

determined by n of (6), that is, the reducing of error
will not be large to cause unnecessary oscillation and
will not be small to cause the convergence too low. On
the other hand, since m is equal to the expected
reduction ratio of the error, whose value is a little less
than 1 which will not influence the convergence of
network seriously, but in steepest descent method the
convergence is sensitive to the learning ratio.

In the standard steepest descent method, when the
number of hidden layer points is added, it is necessary
to reduce the learning ratio to assure the convergence of
the network. In (21), when X; h’ is added, A is reduced
simultaneously. While adding the number of hidden
layer points means to add ¥; h’ and thus A is reduced.
This dynamic learning ratio is helpful for the
convergence stability of the network.

With the same initial value of neural network, the
effect of two different algorithms is shown as Fig. 1.
The training data are from a certain yawing motion of
one underwater vehicle. As can be seen, the
convergence velocity of the network using least
disturbance algorithm is much better.

MODELING USING LEAST DISTURBANCE
WAVELET NEURAL NETWORK

The proposed approach has been verified on a
certain autonomous underwater vehicle named ZS4
(made in HEU, China) for simulation study. The
vehicle has eight thrusters and they can be divided into
four groups based on the function of the thrusters:
horizontal plane thrusters, vertical plane thrusters, side
thrusters and vertical thrusters. Each group has two
thrusters. Horizontal and vertical plane thrusters are the
ducted thrusters and side and vertical thrusters are the
tunnel thrusters. As the velocity increases in the surge
direction, thruster deduction becomes serious enough,
thus we close four tunnel thrusters in the high velocity
to save energy. So in this study, we mainly discuss the
thruster fault diagnosis for four main thrusters. Figure 2
shows the thruster configuration of ZS4.
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Fig. 2: Thruster configuration of ZS4

The autonomous underwater vehicle is a high
coupling system and for identifying each degree,
wavelet neural network should be a multi-input and
multi-output system. The hidden layer function is
defined as the Morlet wavelet:

g(x) = cos(1.75x)e* /2 (22)

754 autonomous underwater vehicle is equipped
with Doppler Velocity Log (DVL) to measure three-
dimensional linear velocity and compass to measure
three-dimensional angles. Considering the sensors and
the execution equipments and simplifying the
approximating model of neural network, we define the
input and output as:

uk=D=[X;(k=1) Yr(k=1) Z;k=1) My(k=1) Ny(k=1) K;(k=D)]

yaw(k)T"
(23)

y(k)=[uk) v(k) w(k) roll(k) pitch(k)

where, U, v W are linear velocity in surge, sway and
heave direction. roll, pitch, yaw are angular velocity in
roll, pitch and yaw direction. Xy, Y1, Z1, Ny, Ky, are
force/moment in surge, sway, heave, roll, pitch and yaw
direction. From the input and output, we can realize 6-
DOF nonlinear model identification.

The neural network structure is 6x60x6. We train
wavelet neural network offline. Initializing the
parameters of wavelet neural network is an important
issue and for the parameter learning rate, we use the
dynamic approach above. For the scale factor and shift
factor, we apply the approach in Zhao and Zhou (2003).

According to the wavelet theory, given t*as the
time domain center, Ay as the mother wavelet radius.
The time domain is given by:

[b+at” —bAy,b+at” +bAy] (24)
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In order to guarantee that the wavelet extends
initially over the whole input domain, the scale factor
and shift factor should satisfy the following equations:

|
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Fig. 6: North velocity of left thruster fault experiment

The net weights is less critical and the parameters
are initialized to small random value between [-1, + 1].

The training data are from the simulation
experiments such as surging, yawing, swaying and so
on. The trained neural network can simulate the motion
of the autonomous underwater vehicle very well. The
Fig. 3, 4 and 5 show the results and we can see that the
least disturbance wavelet neural network can
approximate the whole function outline and also distill
the change detail.

ANALYSIS OF SIMULATION RESULTS

Comparing the outputs of wavelet neural network
with the real state values, we can obtain the residuals
and analyze them to distill fault information. To
minimize the effect of environment noise, the residuals
are analyzed as: in a solid period of gathering a group
of residuals, max value and min value are cut and the
mean valve of the left data is used as the threshold
value. The period and the threshold value are based on
plenty of experiments. If the residual is beyond the
threshold value, we consider there occurs a fault.

In simulation, the faults of the thrusters are
considered as zero outputs of the controller. Simulation
is shown as the example of setting a fault of a certain
thruster in certain time and then analyzing the residuals.
Figure 6, 7, 8 and 9 show the real state values and the
outputs of wavelet neural network in the fault of the left
or the right thruster when the autonomous underwater
vehicle surges. We can see when the main thruster has a
fault, the surge velocity changes and the change
increases to a steady value as time goes. Meanwhile,
the yaw value increases infinitely. For the fault of the
left thruster, the yaw is negative. For the fault of the
right thruster, the yaw is positive. So we can set one
threshold value for each degree. If both the residual of
the real velocity and the estimated velocity and the
residual of the real yaw and the estimated yaw are
beyond the separate threshold value and the yaw
residual is negative, the left thruster has a fault. If both
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045
0.4
035
03t
0.25

real sate

1 (s

015 b f
oLt
005 |

0

0.2 /f ersaemenenee 3fina ted state

I 50 100 150 200 150 300
L

Fig. 8: North velocity of right thruster fault experiment

018 ¢
016
014
01zt
ot
INIE
0.6
n.o4
0oz

0 . . .
il 50 100 150 200 250 300
t(s)

yaw (rad)

real state

cnmneemeneeee politnated state

Fig. 9: Yaw of right thruster fault experiment

the residual of the real velocity and the estimated
velocity and the residual of the real yaw and the
estimated yaw are beyond the separate threshold value
and the yaw residual is positive, the right thruster has a
fault. For the other thrusters, the approach is the same.

CONCLUSION

Aiming at the character that hidden layer wavelet
function of wavelet neural network can adjust scale
factor and shift factor to affect output of the network,
the least disturbance algorithm adding scale factor and
shift factor is proposed. The algorithm can calculate the
dynamical learning ratio to improve the stability and the
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convergence of the wavelet neural network. Meanwhile,
for strong ability of distilling signal details and
mapping nonlinear function of wavelet neural network,
the algorithm is applied to build the dynamical model
of the autonomous underwater vehicle and the residuals
are achieved by comparing the outputs of the neural
network with the real state values. Fault detection rules
are distilled from the residuals to execute actuator fault
diagnosis. The results of simulation prove the approach
is effective.
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