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Abstract: This study establishes a target motion model and an observation model under the condition of colored 
noise by using the Kalman filter based on an improved IMM (interactive multiple model) for maneuvering target 
tracking. To improve the overall performance of IMM algorithm, we proposed to combine the CV (constant 
velocity) and CA (constant acceleration) models with the "current" statistical model, in which its acceleration 
extremum is not fixed. Since the system model information is implicit in the current measurement, the Markov 
transition probability is computed online and real-timely, so as to obtain more accurate a posterior estimation and 
improve the model fusion accuracy. Monte Carlo simulations are carried out for the experiments and the results 
reveal that the proposed algorithm can get better performance in comparison with traditional IMM which adopts the 
"current" statistical model and CV-CA models. 
 
Keywords: Interactive multiple model, Markov transition probability, Monte Carlo, target tracking 

 
INTRODUCTION 

 
In military and civil fields, such as missile and 

aero-traffic management, reliable and accurate tracking 
is always the main purpose of target tracking systems. 
In realization of maneuvering target accurate tracking, 
the first problem to be solved is to ensure that the target 
motion model matches with the actual target motion 
model. 

After decades of continuous research by the 
scholars, a lot of target models and tracking algorithms 
have been proposed. The CV (Constant Velocity) 
model of uniform linear motion and the CA (Constant 
Acceleration) model of uniformly accelerated motion 
are maneuvering targets models for time-constant 
systems (Li and Jilkov, 2003; Xu and Wang, 2006; Wei 
et al., 2012). These two models were the earliest, 
relatively simple and common models, but poorly 
applicable. Maneuvering acceleration model (Singer 
model) uses colored noises instead of white noises to 
describe the maneuvering control, which is more 
realistic (Li and Jilkov, 2003; Bilik, 2010). But it is 
only applicable to the uniform and accelerated targets. 
If the target maneuvering performance is over this 
range, this model will cause larger model error (Li and 
Jilkov, 2003; Xu and Wang, 2006). 

Bar-Shalom and Birmiwal presented a CS 
("current" statistical) model of maneuvering targets 
(Bar-Shalom and Birmiwal, 1982), firstly by adding the 
acceleration mean item. Secondly they used the 
modified Rayleigh-Markov process to describe the 

maneuvering acceleration statistical characteristics of 
targets, reflecting the change of the target maneuvering 
range and intensity authentically, which was more 
suitable to the actual maneuvering target. Another 
useful method for maneuvering target tracking is the 
Interactive Multiple Model (IMM) algorithm (Singer, 
1970; Blom and Bar-Shalom, 1988; Mazor et al., 1998), 
which can exchange large computational resources for 
tracking maneuvering performance because a plurality 
of parallel Kalman filters are used in the model. At the 
same time, as the accurate transition probabilities 
between models are unavailable in the prior to cause 
usage of the IMM, the tracking precision is restricted. 
With the help of Singer model’s thought, Mehrotra and 
Mahapatra proposed a Jerk model of maneuvering 
targets (Mahapatra and Mehrotra, 1997, 2000). It 
assumes that the target Jerk obeys the zero mean, one-
order smooth related process and the time correlation 
function is in the exponential decay form. Compared 
with Singer model, the target acceleration change rate 
(Jerk) is added into the state vector. The Jerk model is a 
higher order and more accurate model. But in tracking 
of targets with step acceleration changing rate, Jerk 
model has steady-state deterministic error problem (Qi 
and Chen, 2008). In recent years, many researchers 
have proposed some target tracking algorithms based 
on nonlinear filtering such as insensitive Kalman 
filtering, particle filtering (Wang et al., 2007; Mirosław 
et al., 2011). These methods are not subjects to linear 
error or Gauss noise assumption     limits,    but   the 
amount of calculation is large. In order to overcome the 
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deficiency of single model, many scholars put forward 
some   improved  α-β, α-β-γ   filtering  algorithms (Jin 
et al., 2003; Qiao et al., 2002) and some combinatorial 
algorithms (Lei and Han, 2006; Li et al., 2007; Li and 
Yingmin, 2010). However, in radar applications, 
methods with high tracking accuracy and real-time 
performance for tracking high maneuvering targets may 
be particularly necessary for tracking the behavior of 
un-predictable target.  

To solve the problem mentioned above, this study 
employs Kalman filter based on improved IMM for 
maneuvering target tracking. In our method, we 
propose to combine the CV and CA models with the 
"current" statistical model to improve the overall 
performance of IMM algorithm. Therefore the 
acceleration extremum is not fixed in the method. Due 
to the system model information that is implicit in the 
current measurement, the Markov transition probability 
is then computed online and real-timely, so that more 
accurate a posterior estimation and model fusion 
accuracy can be obtained in this way. 
 

SYSTEM BASIC MOTION MODEL 
 
Discrete time state equation and measurement 
equation: Consider the following discrete time state 
equation and measurement equation, which are depicted 
in Fig. 1: 

 
X(k+1) = Φ (k) X(k) + Γw(k)                       (1) 

 
Z(k) = C(k) X(k) + v(k)                                         (2) 
 

where, vector X(k) and Z(k) denote the maneuvering 
target motion state and measurement quantity at k 
moment respectively. Ф (k) and C(k) denote the system 
process matrix and measure matrix at k moment 
respectively. w (k) and v(k) denote the system process 
noise and measurement noise at k moment respectively. 
Г (k) is the process noise matrix. 

As the form and parameters of Ф (k) and w (k) in 
(1) cannot be determined, maneuvering target tracking 
process  is  essentially  an   adaptive   filtering  process.  

 

Firstly, maneuvering identification or maneuvering 
detection are conducted on the basis of the change of 
residual d. Secondly, adjusting filter gain, covariance 
matrix and unknown parameters according to some 
kind of Logic or criterion, to identify the characters of 
target maneuver real-timely. Finally, the state 
estimation value and the predicted value of the target 
are obtained by the filtering algorithm; thereby 
complete the maneuvering target tracking (IIke, 2008). 
 
 
CV (Constant Velocity) model: When the target does 
constant velocity motion: 
 

 X = [x(k) ]T 
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where, ux (k) and uy (k) are independent Gaussian white 
noise with zero-mean and variances σ2

ux, σ2
uy. 
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where, vx (k) and vy (k) are independent Gaussian white 
noise with zero-mean and variances σ2. 
 
Constant acceleration model: When the target does 
uniform rotation movement, it can be approximated that 
the acceleration is constant: 
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Fig. 1: Basic principle framework of the single maneuvering target tracking 
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where, ux (k) and uy (k) are independent Gaussian white 
noise with zero-mean and variances  σ2

ux , σ2
uy: 
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where, vx (k) and vy (k) are independent Gaussian white 
noise with zero-mean and variances σ2. 
 
"Current" adaptive statistical model: In one 
sampling period T, the relationship of target velocity 
increment and acceleration increment can be expressed 
as follows: 

 
[ ](k)= (k) (k)v T a a∆ + ∆                                          (3) 

 
 The predictive estimation value -1 of target 

velocity at k moment is taken as the velocity prediction 
estimation value from k-1 moment to k moment. The 
effect of the acceleration disturbance from k-1 moment 
to k moment on the observation value is not considered. 
However  considers the observation value at k 
moment, which contains the effect of the acceleration 
disturbance from k-1 moment to k moment on the 
observation value. So the disturbance increment 
relationship of the acceleration from k-1 moment to k 
moment can be described by the deviation relationship 
between the velocity estimate value   and the 
velocity estimate predictive value   of targets at k 
moment approximately, that is, 
 

| | 1
1(k)= k k k ka x x
T −⎡ ⎤∆ −⎣ ⎦& &                                         (4) 

 
As the relationship of the maneuvering acceleration 

covariance and the absolute value of the acceleration 
disturbance increment are linear, there is a linear 
relationship between the acceleration increment and 
velocity estimation deviation at fixed sampling time. So 
the relationship of maneuvering acceleration covariance 
and velocity estimation deviation is linear, expressed as 
follows. 
 

2
1 | | 1ak k k k kx xσ + −→ −& &                            (5) 

 
Take constant C as proportional coefficient, then 

(5) can be expressed as follows: 
 

2
1 | | 1ak k k k kC x xσ + −= −& &                            (6) 

 
Seen from (6), when the target maneuvers, velocity 

estimation deviation increases, the acceleration variance 
also increases, so the filter gain value becomes larger. 
When the target doesn’t maneuver, velocity estimation 
deviation is smaller, the acceleration variance is 

smaller, there by the filter gain is not large. So the 
acceleration variance equation of (6) consists with its 
physical significance. This method adjusts the variance 
adaptively, which can well reflect the target motion 
state without the need for maneuvering detection and 
does not need to determine acceleration extremum a 
priori, so that the actual application value is high. 
 

KALMAN FILTER OF CORRELATED 
MEASUREMENT NOISE 

 
Here considering the filtering estimation problem 

in case of correlated measurement noise, Kalman filter 
basic signal model is:  

 
X(k+1) = Φ(k+1, k) X(k)+ Γ(k)w(k)  
Y(k) = C(k) X(k) 

 
The observation model is: 
 
 Z(k) = Y(k) + v(k) 
 
where, w(k) and v(k) are Gaussian white noise with 
zero-mean and: 
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vi (k) denotes the colored measurement noise of the 

ith model in IMM algorithm, regarded as a first-order 
Marco Cardiff sequence. A random sequence generated 
by that discrete white noise sequence with variance {ξ 
(k), k T} effects on the linear system is as follows: 
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where,  
 

( )1, ,Q k k e β−+ = 2( ) 1S k e βα −= −  

 
Then the measurement equations of the ith model are: 
 

Z(k) = Ci(k) Xi(k) + vi (k) 
 
which can be written as: 
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 where, 
 

H*i(k) = Ci(k). Φi (k, k - 1)- Q(k, k-1). Ci(k) 
  

Then the measurement equation can be taken as 
only containing white noise sequence wi (k-1) and ξ (k-
1), the Kalman filter recursive steps are as follows: 
 
Step 1: According to the previous filter value (k-1/k-

1) (or initial value  (0/0), calculating the 
predictive values: 
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Step 2: According to the previous filtering error 

variance matrix (k-1/k-1) (or initial value 
(0/0), calculating the prediction error 

variance matrix: 
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Step 3: Calculating the Kalman gain: 
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Step 4: Calculating the filtering estimation: 
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Step 5: Calculating the error variance matrix: 

 
( ) ( ) ( ) ( )/ / 1X Xk k k k k k= − −⎡ ⎤⎣ ⎦P I K C P% %               (13) 

 
IMPROVED IMM ALGORITHM 

 
The system equation and measurement equation of 

the jth model of the interactive multiple models are 
shown as follows: 

 
Xj(k+1) = Φj (k)Xj (k)+ Γj wj(k) 
Zj(k+1) = Cj (k +1) Xi( k+1)+ vj(k+1) 

where, Фj (k) is the state transition matrix of the jth 
model at k moment, Cj (k+1) is the measurement 
transition matrix of the jth model at k+1 moment, wj (k) 
and vj (k+1) are independent Gaussian white noise with 
zero-mean and variances Qj (k) and Rj (k+1).  

Define state transfer probability matrix of system 
model at k moment as Pij: 
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Pij denotes the transfer probability from the ith filter to 
the jth filter to filter at k moment, i, j =1,2,..., N: 
 
where, 
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δij (k) and Sij (k) denote measurement innovation and 
innovation covariance matrix respectively. 
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The above equations contain more accurate model 

of the probability distribution information Pij(k+1), 
when adjusting the interactive input of interacting 
multiple model algorithm, taking Pij(k+1) as the model 
transition probability matrix at next time. Therefore, the 
accuracy of a priori information is improved and the 
model fusion precision is improved. 
 

EXPERIMENTAL RESULTS 
 

In order to verify the effectiveness of the proposed 
algorithm in this study, the improved IMM algorithm is 
compared with the classical "current" statistical model 
for the maneuvering target tracking as can be seen from 
Fig. 2 to 4. The experiments are realized by Monte 
Carlo simulation test for different models, in which the 
sampling period is set as: T = 1s. 

Seen from Fig. 2 and 3, because of the combination 
of "current" statistical model in which its acceleration 
extremum is not fixed with the CV/CA model in the 
IMM    algorithm,   the    overall   performance  of IMM  



 
 

Res. J. Appl. Sci. Eng. Technol., 5(10): 3063-3068, 2013 
 

3067 

 
 
Fig. 2: Classical IMM with the model state and estimate 
 

 
 
Fig. 3: The improved IMM model state and estimate 
 

 
  
Fig. 4: The contrast of the improved algorithm and use 

"current" statistical model of fusion output 
covariance 

 
algorithm is improved consequently. When the target 
doesn’t maneuver nor does the low maneuvering 
motion, the improved algorithm performance is better 
than that of the classical "current" statistical model of 
IMM algorithm. However, when the target does large 

maneuvering motion, error of improved algorithm is a 
little lower. 

Seen from Fig. 4, the improved algorithm has 
better tracking effect compared with the classic 
"current" statistical model on maneuvering. On the non-
maneuvering phase, their tracking performance is 
equivalent. In the motor, the improved algorithm can 
well suppress increasement of tracking error caused by 
the sudden movement. When the target maneuvers, the 
improved algorithm uses the system model information 
that is implicit in the current measurement. This 
algorithm computes the Markov transition probability 
online and real-timely, therefore it can obtain more 
accurate a posterior estimate and improve the model 
fusion accuracy.  

From Fig. 2, 3 and 4, we can find that this 
algorithm uses the Kalman filter based improved IMM 
for maneuvering target tracking, which combine the 
"current" statistical model, so its acceleration extremum 
is not fixed. In the algorithm the CV and CA model is 
to make the improved IMM have the ability to change 
the model set. Using the system model information that 
is implicit in the current measurement and the online 
real-timely computing Markov transition probability, 
more accurate a posterior estimate and the model fusion 
accuracy can be improved. In this way, a higher overall 
performance of the improved IMM algorithm can be 
achieved. Therefore, it is easy to see that this algorithm 
has better self-adaptability compared with classical 
IMM algorithm for different target maneuvering forms. 
 

CONCLUSION 
 

To overcome the acceleration extremum preset 
dependence problem and its fixed acceleration 
deficiency in the "current" statistical model, an 
improved interacting multiple model algorithms for 
maneuvering target tracking is presented in this study. 
The algorithm is developed by combining the CV and 
CA models with a "current" statistical model, which 
can use the implicit system model information to 
efficiently compute the Markov transition probability so 
as to improve the performance of the algorithm. The 
deviation between the velocity prediction estimation 
and velocity filtering estimation is used to adjust the 
acceleration variance adaptively. The Monte Carlo 
simulation results show that the proposed algorithm is 
effective and has the advantage of higher model fusion 
accuracy compared with the classical IMM algorithm. 
The adaptive tracking method in the study can be 
applied to track high maneuvering target because it has 
smaller filtering error and better performance than that 
of the classical IMM algorithm. 
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