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Abstract: Brain network is a widely used tool for identifying abnormal topological properties in whole-brain 
networks which has been applied to neurological disease diagnosis such as Major Depressive Disorder (MDD). But 
there is not any study showing that abnormal brain network topological metrics can be used in machine learning 
classification methods for the identification of MDD patients. In order to find an appropriate feature selection 
method, we hypothesize that MDD disrupts the topological organization of functional brain networks and the 
abnormal topological metrics could be used as effective features in constructing a classifier. Resting state functional 
brain networks were constructed for 26 healthy controls and 34 MDD patients by thresholding partial correlation 
matrices of 90 regions. The topological metrics, including global and local, were calculated using graph theory-
based approaches. Non-parametric permutation tests were then used for group comparisons of topological metrics, 
which were used as classified features in support vector machine algorithm. Result showed that both the MDD and 
control groups showed small-world architecture in brain functional networks. However, some of the regions 
exhibited significantly abnormal nodal centralities, including the limbic system, basal ganglia and medial temporal 
and prefrontal regions. Support vector machine with radial basis kernel function algorithm exhibited the highest 
average accuracy (86.01%) with 28 features (p<0.05). Overall, the current study suggested that MDD is associated 
with abnormal functional brain network topological metrics and statistically significant network metrics can be 
successfully used in classification algorithms as features. 
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INTRODUCTION 

 
Functional neuroimaging studies have suggested 

that Major Depressive Disorder (MDD) is related to 

some abnormal brain regions such as hippocampus, 

parahippocampal gyrus, precentral gyrus, caudate 

nucleus and so on Zhang et al. (2011). With studied on 

MDD in greater depth, we understood more about 

depression, but the past researches had only focused on 

specific brain region or connections between several 

brain regions (Greicius et al., 2007). At present, there 

are few studies showed the global topological 

organization of whole-brain networks of MDD. 

Complex graph theoretical analysis provided a powerful 

research method for characterizing topological 

properties of brain networks and proved that functional 

brain networks of normal controls have typical features 

of small-world (He et al., 2007). Abnormal brain 

network topological metrics which provided a new 

perspective  of  potential  biomarkers  for  neurological  

disease diagnosis had been found in various brain 

diseases. 

Machine learning and pattern recognition methods 
have recently been applied in the classification of 
MDD. Costafreda (2009) and Fu et al. (2008) 
constructed classifiers using structural and functional 
magnetic resonance imaging data and tested them with 
normal controls and MDD patients, respectively, 
reporting accuracy rates of 67 and 86%. Gong et al. 
(2011) investigated differences between the use of gray 
matter and white matter as classification features and 
used Support Vector Machine (SVM) algorithms to 
distinguish refractory and non-refractory depressive 
disorder, reporting accuracy rates of 65.22 and 76.09%, 
respectively. 

As a widely used tool for identifying abnormal 
topological properties in whole-brain networks, brain 
network has been applied to neurological disease 
diagnosis such as Alzheimer’s disease, schizophrenia 
and epilepsy. Despite the increased understanding of 
MDD, it remains unclear that the alterations of 
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topological metrics of the whole brain in MDD patients. 
To our knowledge, there is not any study showing that 
abnormal brain network topological metrics can be used 
in machine learning classification methods for the 
identification of MDD patients.  

In order to find an appropriate feature selection 
method, we hypothesize that MDD disrupts the 
topological organization of functional brain networks 
and the abnormal topological metrics could be used as 
effective features in constructing a classifier. To verify 
this hypothesis, we collected Resting fMRI data from 
34 drug-naive, first-episode Major Depressive Disorder 
(MDD) patients and 26 healthy controls to construct 
functional brain networks in a continuous sparsity range 
and analyze those networks using graph theoretical 
approaches to find the significant topological 
organization differences of functional brain network 
between MDD patients and normal controls in different 
sparsity. The Area Under the Curve (AUC) of each 
merics were calculated which were used as 
classification features in Support Vector Machine 
(SVM) algorithm in order to find a machine learning 
approach for the diagnosis of depression. 

 
MATERIALS AND METHODS  

 
Subjects: A total of 60 subjects were recruited, 
including 34 first-episode drug-naive MDD patients as 
MDD group and 26 age-and sex-matched healthy 
controls as control group. All subjects in the control 
group have no history of mental or neurological 
disorders according to SCID Non-Patient Edition and 
SCID-II. All subjects in MDD group are MDD patients 
according to the DSM-IV (SCID) (First et al., 1997) 
and the 17-item Hamilton Rating Scale for Depression 
(HRSD) (Williams, 1988). All subjects were inpatients 
at the Department of Psychiatry, First Hospital of 
Shanxi Medical University. The control subjects were 
recruited from local communities. Written informed 
consent to participate in the study was obtained from all 
control subjects and from the first-degree relatives of all 
patients, which was approved by the Ethics Committee 
of the Chinese Academy of Medical Science. Data 
collection was performed during September 2010 to 
June 2011.  
 
Data collection and preprocessing: All subjects 
underwent resting state functional MRI using a 3T MR 
scanner (Siemens Trio 3-Tesla scanner, Siemens, 
Erlangen, Germany). Image preprocessing was 
performed using DPARSF software (version 2.0; Yan 
Chao-Gan, State Key Laboratory of Cognitive 
Neuroscience and Learning, Beijing Normal University, 
Beijing, China). The first 10 volumes were discarded 
and the remaining were slice timing- and head motion-
corrected. Data of one control and one patient were 
discarded because their heads moved more than 1 mm 
of translation or 1° of rotation in any direction. After 
these corrections, the images were spatially normalized 
to the standard space of the Montreal Neurological 

Institute (MNI) using an optimum 12-parameter affine 
transformation and nonlinear deformations to resample 
as 3-mm cubic voxels. Linearly detrended and band-
pass filtered (0.01-0.08 Hz) were performed to reduce 
the effect of low frequency drifts and high-frequency 
noise. 
 
Network construction and threshold selection:  
Node definition: The current study divided the whole 
brain into 90 according to Automated Anatomical 
Labeling (AAL) (Tzourio-Mazoyer et al., 2002) which 
as the international standard widely used in the field of 
brain imaging, with each representing a node of the 
network. Each node represents a brain region and the 
mean time series for all voxels in each region was 
calculated as part of the time-series of the 
corresponding node.  

 
Edge definition: We computed partial correlation 
coefficients as edges in the network. Fist, the mean time 
series of each node was processed by regressing out the 
head motion profiles estimated in the image 
realignment from the mean time course. After that, any 
two nodes of the residuals of the regression analyses of 
were used to compute the partial correlation to acquire 
the correlation coefficient of mean time series of any 
two nodes, the method adopted was:  
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where,  
xi & xj : Respective residual time series of node i and 

node j 
���  & ���  : Respective the mean time series of node i and 

node j  
 
And then a 90×90 partial correlation matrix A of time 
series for each subject was obtained. At last, partial 
correlation matrices A were converted into binarized 
matrices B = [bij] according to a predefined threshold, if 
the value of the partial correlation between nodes i and j 
was larger than the threshold, the entry bij was 1 and if 
the value of the partial correlation between nodes i and j 
was smaller than the threshold, the entry bij was 0. In 
this article, we will use a series of successive thresholds 
to construct brain networks. 
 
Threshold selection: For all correlation matrices, we 
must select a threshold to convert correlation matrices 
to binary matrices. Each threshold corresponds to a 
sparsity which was defined as the ratio of the number of 
existing edges divided by the maximum possible 
number of edges in a network. Instead of selecting a 
single threshold, we selected a threshold space 
according to the following criteria and construct brain 
networks corresponding to each sparsity in the 
threshold space: 
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• The average degree over all nodes of each network 

k constructed in the threshold space was larger than 

2×InN with N = 90 here. N denotes the number of 

nodes 

• The small-worldness scalar σ of each network 

constructed in the threshold space was larger than 

1.1 

 

Based on the above principles, the threshold spaces 

8-32% was selected. All of the network analysis was 

within this threshold space and the interval was set as 

1% throughout this study. 

 

Network metrics and statistical analysis: For brain 

networks at each sparsity threshold in the threshold 

space, two global metrics (clustering coefficient and 

characteristic path length) and three local metrics 

(degree, betweenness centrality and nodal efficiency) 

were calculated.  

More over we calculated the AUC for each metrics, 

which provides a summarized scalar for topological 

characterization of brain networks at different sparsity. 

The AUC metric has been used in previous brain 

network studies which suggested that AUC was very 

effective for studying topology properties of brain 

networks. 

Non-parametric permutation tests were performed 

on the network metrics and their AUC of MDD group 

and control group in order to determine whether there 

existed significant group differences. 

 

Classifier: To automatically identify the disease data, 

we used machine learning methods to construct a 

classifier. All of the metrics were selected as 

classification features, which were used in SVM 

algorithms (radial basis kernel function). Three 

different features selection methods were performed: 

AUC, peek value and both of them. 

To compare classifier performance alterations with 

different numbers of features, we used a range of p-

values as significance thresholds. We used five 

threshold levels: p<0.005, p<0.015, p<0.05, p<0.10 and 

p<0.15. The corresponding feature numbers were 4, 15, 

28, 55 and 87. 

A cross-validation method was used to evaluate the 

performance of models. We randomly selected 70% of 

samples as a training set and the remaining 30% as a 

test set. The accuracy rate of the test set was recorded. 

This procedure was repeated 200 times for each 

threshold. Cross-validation methods have been widely 

used in previous studies (Pereir et al., 2009). 

 

RESULTS 

 

Global metrics: Result showed that comparing with 

random network, brain networks of both MDD and 

normal controls demonstrated an economic small-world  

Table 1: Regions exhibiting abnormal nodal metrics in MDD patients 

compared to controls 

Brain regions 

p-value 

------------------------------------------------------------------- 

Degree Betweenness centrality Nodal efficiency 

MDD<control 

Left FFG 0.016 0.151 0.047 

Left ORBinf 0.017 0.179 0.034 

Right CUN 0.025 0.001 0.093 

Right SFGmed 0.035 0.495 0.151 

Right ORBmid 0.049 0.557 0.025 

Left IFGoperc 0.050 0.295 0.141 

Left CAL 0.058 0.547 0.046 

Right IFGoperc 0.063 0.048 0.178 

Right ORBsupmed 0.082 0.848 0.044 

MDD>control 

Right HIP 0.001 0.005 0.003 

Left ANG 0.008 0.284 0.011 

Right PCG 0.008 0.167 0.007 

Right THA 0.008 0.004 0.008 

Right PUT 0.014 0.213 0.023 

Right MOG 0.021 0.443 0.027 

Right DCG 0.070 0.482 0.014 

Left DCG 0.073 0.632 0.048 

 

topology. Despite common small-world architecture, 

significant differences were found in global metrics 

between MDD patients and controls. Compared with 

normal controls, No significant differences were found 

in clustering coefficient, but MDD patients show 

significant low characteristic path length (p<0.05). That 

suggested that brain network of MDD group had more 

long distance connections and were closer to a 

randomized configuration. 

 

Nodal metrics: Non-parametric permutation tests were 

performed on AUC of each nodal degree of brain 

networks in the threshold space of MDD group and 

control group. Compared with normal controls MDD 

patients showed significant increased nodal centrality in 

many brain regions including the limbic system 

(including the right hippocampus, right posterior 

cingulate gyrus, bilateral median cingulate and 

paracingulate gyri), part of the basal ganglia (right 

putamen and right thalamus) and left angular gyrus, 

among others. 
Decreasing nodal centralities in MDD patients 

were predominantly located in several regions of 
medial occipital (right cuneus and left calcarine fissure 
and surrounding cortex), medial temporal (left fusiform 
gyrus) and prefrontal (left inferior frontal gyrus (orbital 
part), right superior frontal gyrus (medial), right middle 
frontal gyrus (orbital part), bilateral inferior frontal 
gyrus (opercular part) and right superior frontal gyrus 
(medial orbital)) regions. Most of the regions 
mentioned above, including the hippocampus, cingulate 
gyrus, lenticular nucleus and thalamus, are components 
of Limbic-Cortical-Striatal-Pallidal-Thalamic (LCSPT) 
tract (Table 1). 

 

Classifiers: The AUC of the each metric value were 

selected as classification features and tested in SVM 

algorithms. The results revealed that when both AUC 

and peak value were selected  as features,  the classifier  
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Fig. 1: Average accuracy in support vector machine 

algorithms with different feature selection 

 

exhibited the best performance, with an average 

accuracy of five thresholds reaching 86.01% Fig. 1.  

Comparing the five threshold values revealed that 

all the methods exhibited the highest accuracy with 28 

features (p<0.05). The results suggested that different 

models always had an optimized feature number. 

 

DISCUSSION 
 

At present, studies about MDD focused on the 

topological organization of functional brain networks. 

The results of these studies reveal that compared to 

control group, functional brain networks in MDD group 

had decreased path length, implying a disturbance of 

the normal global integration of whole-brain networks. 

Moreover, many local brain regions were profoundly 

affected by MDD: both caudate nucleus and some of 

default-mode regions showed increased nodal degrees, 

while several regions showed decreased degrees. The 

result provided insights into our understanding of 

altered topological organization in functional brain 

networks of MDD. 

The human brain is complex which is an 

interconnected and has various characteristics, such as 

small-world and high efficiency at a low wiring cost. In 

small-world networks, on the one hand, local clustering 

of nodes is superior to the modular information 

processing; on the other hand, a low characteristic path 

length is also needed in order to ensure global 

efficiency. More recently, Latora and Marchiori (2001) 

expanded the two measures of efficiency and cost of the 

small-world theory. A network that have high 

efficiency of information transmission must is cheap to 

build which is called economic small-world networks. 

For evaluating of functional brain networks, small 

world is an attractive model, because high local 

clustering and short characteristic path length support 

the two principles of functional brain network: 

functional separation functions and functional 

integration. Here, we found that whole-brain functional 

networks of both MDD group and control group 

showed high small-world topology, by using small 

world model and new efficiency measures. 
Despite the common small-world topology, there 

were significant differences between two groups in 
network characteristics. No significant differences in 
clustering coefficient of brain networks between MDD 
patients and controls but significant differences in 
characteristic path length of brain networks between 
MDD patients and controls. These changes of global 
network properties may be due to the decrease of 
characteristic path length in functional brain networks 
of MDD patients. Compared to small-world networks, 
random networks have low information transmission 
capacity and fault-tolerant ability. Therefore, the loss of 
some properties of the small-world network in 
functional brain networks of MDD group suggested that 
the loss of optima in functional brain networks of MDD 
group to further clarify the mental breakdown of 
organizational structure in patients with depression, 
reduced cognitive and emotional capacity. 

We also found that degrees significantly increase in 
the threshold space in some brain regions of MDD 
group such as hippocampus, lenticular nucleus putamen 
and angular gyrus, which are related to emotions. 
Hippocampus is primarily responsible for the tasks of 
memory and learning, related reports indicated: if the 
hippocampus is damaged, the patient will lose one part 
or even all of memory who may be forgetful and his 
imagination are also affected, compared to controls 
(Bannerman et al., 2004). Lenticular nucleus putamen 
is mainly responsible for movement and sensation. 
Angular gyrus is a brain region which connecting visual 
area and hearing area, if angular gyrus is damaged, the 
abilities of reception and expression of language will be 
affected (Segal et al., 2010). Hippocampus, lenticular 
nucleus putamen and angular gyrus are parts of the 
limbic system which play an extremely important role 
in process of mood producing, memory and learning. 
These brain areas are also all belong to the default 
network, recent brain imaging studies have shown that 
default networks of MDD group are different from 
control group (Holzschneider et al., 2012). Thus, our 
findings are consistent with previous research results. 
Increased nodal degree of these regions relating to 
emotion, suggest their strengthened roles of 
coordinating whole-brain networks, presumably in 
response to the emotional response of MDD. 

While degrees decrease in the threshold space in 

other brain regions of MDD group including cuneus 

and fusiform gyrus. Some studies found that cuneus 

was associated with cognitive function, which was 

mainly responsible for self-awareness, dealing with 

information about oneself, episodic memory and so on. 

The facts proved that cuneus of first-episode drug-naive 

MDD patients were abnormal which was compatible 

with the results of our experiments (Zhu et al., 2012). 

We found that the classifier exhibited the best 
performance when both of AUC and peak value were 
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selected as features. AUC provides a summarized scalar 
for topological characterization at different sparsity, but 
peak value emphasizes the local characterization. If 
both of them were selected as features, it would 
intensify the contribution of the specific abnormal 
metrics during the classification process. 

This suggests that different feature selection 
methods have great impact on model performance. As 
such, when building a classifier with brain network 
metric features, it is important to re-evaluate the 
classification algorithm. 

The current study revealed that most of the 
classifier exhibited the highest with 28 features 
(p<0.05). We speculated that the number of features 
impacted on the classifier performance rather than the 
p-value. Using simulation data, Hua et al. (2005) 
compared seven kinds of classifier with 0 to 200 of the 
sample size to find a different effect of error rate with 
different feature numbers, reporting highest accuracy 
with 28 and 30 features when the sample size was 50 
for linear-SVM and LDA, in accord with the current 
findings. 

Several important issues should be addressed in 
future studies. First, definition of nodes and edges are 
critical in brain network research and brain networks 
with different parcellation schemes are likely to exhibit 
different topological architectures (Fornito et al., 2010). 
In the current study, functional brain networks were 
constructed at a regional level based on a previously 
published atlas. Future studies are required to determine 
which spatial scale is most appropriate for describing 
the network topology of MDD.  

Second, as an exploratory analysis, the statistical 
results of our network metrics were not corrected. 
Future studies should test a large sample of MDD 
patients to increase statistical power. 

Finally, the optimal feature number depends on a 
variety of factors, including sample size, classifier 
rules, the distribution of the sample categories, selected 
feature efficiency and ordering. Future studies are 
required to determine the optimal number of selected 
features for building the most effective classifier for a 
specific brain disease. 

 
CONCLUSION 

 
Constructing functional brain networks of MDD 

patients by the method mentioned in this article and 
comparing to functional brain networks of controls, we 
found that the MDD patients showed a decreased path 
length in their brain networks and properties in nodes 
which were related to emotion have altered as 
compared to controls. We could get higher 
classification accuracy, if we use both of peak value 
and AUC of the metrics as classification features to 
identify individuals  

In summary, the present study provides evidence 

that MDD is associated with abnormal functional brain 

network topological metrics which could be used as 

effective features in constructing a classifier. Our 

research provided an initial step towards the use of 

brain network topological metrics. It would be 

clinically significant to identify individuals and predict 

the treatment automatically avoiding self-reported 

symptoms. 
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