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Abstract: In this study, we set the average taxi time of flight as the objective of the gate and runway assignment 

problem. We present a gate and runway combinatorial optimization model with several restrictions such as 

restrictions of gate and runway time, type of aircraft and service. We design a Discrete Particle Swarm Optimization 

(DPSO) algorithm to solve this problem. Inspired by the genetic algorithm and combined with the neighborhood 

search, we propose a new location update strategy. Finally, numerical experiments were carried out on two cases 

where gate supplication is adequate and it’s not, experimental results show that the discrete particle swarm algorithm 

achieved very good results. 
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INTRODUCTION 

 
In recent years, with the continuous growth of air 

traffic, the airport's limited resources are becoming a 
bottleneck to limit the development of aviation industry. 
In face of the fierce competition and requirement to 
improve the quality of passenger service, a rational and 
efficient management and allocation of resources have 
become an increasing concern of the administrative 
departments and the airline. Gates and runways are 
critical resources provided to flights by civil airport and 
reasonable optimization of the allocation of gates and 
runways can reduce flight taxiing time, improve the 
operating efficiency of the airport, reduce airline 
operating costs and reduce flight delays. 

Under normal circumstances, taxi route between 
gate and runway is fixed. Therefore, in cases not 
considering the sliding blockage, a specific flight can 
have different taxiing time among different allocations 
to gate and runway combinations. This can make ground 
control agencies, airlines and airport authorities 
determine the minimum gate and runway allocation 
scheme to minimize the average flights taxiing time. 
The optimal program can be determined a day before 
according to the published flight schedules and 
passenger reservation. Gate and runway combinational 
optimization is to determine the optimal gate and the 
runway combinational assignment scheme, making the 
flight taxiing time. Traditional gate assignment problem 

only considers constraints related to gate assignment to 
determine the flight-to-gate assignment scheme 
minimizing the objective function, while gates and 
runways combinatorial optimization should consider 
constraints related to both gate assignment and runway 
assignment to make the optimal assignment scheme that 
minimize the flight taxiing time. 

Braaksma and Shortreed (1971) proposed one of the 
first attempts to use quantitative aproaches to minimize 
intra-terminal travel through the design of terminals. 
Babic et al.

 
(1984) formulated a 0-1 integer 

programming model for the AGAP and used the branch 
and bound method to search the optimal assignment 
scheme, while not considering transfer passengers.Yan 
and Chang (1998) proposed a multi-commodity network 
flow model and used the Lagrangian relaxation method 
with sub-gradient and a Lagrangian heuristic function to 
solve the problem. Baron by the simulation analyzed the 
impact of different gate usage policies for passengers’ 
walking distance (Baron, 1969). Yan and Huo (2001) 
proposed a bi-objective 0-1 integer programming model 
to assignment gates. One goal is to minimize 
passengers’ travelling time and the second objective is 
to minimize passengers’ waiting time, because while an 
aircraft in flight peak time is waiting for available seats, 
passengers  are  also  waiting  for  its target flight. Pintea 
et al. (2008) have proposed a gates assignment method 
which used a hybrid ant colony local search algorithm 
with  the  objective  of  minimizing passengers walking  
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distance. Gu and Chung (1999) proposed a genetic 

algorithm to solve the AGAP problem where the 

optimization objective is to minimize delay introduced 

by gate reassignment. Bolat (2000)
 

studied the 

robustness of gate assignment through analyzing the 

characteristic of uncertainties of flight delays and its 

difficulty to accurately estimate. Bard and Yu 

introduced an integral minimum cost network flow 

model. This model aims at reconstructing airlines 

schedules in response to delays by trans-forming the 

routing problem into a time-based network in which the 

overall time horizon is divided in discrete periods. The 

transformation is polynomial with respect to the number 

of airports and flights. An optimum of the new model 

corresponds to the optimal solution of the original 

problem under some slight conditions (Bard et al., 

2001). Xu and Bailey (2001) have designed a kind of 

simple heuristic tabu search algorithm to solve the 

problem by constructing AGAP (Airport Gate 

Assignment Problem) as a mixed 0-1 quadratic integer 

programming problem and then converting it into a 0-1 

integer programming problem with a linear objective 

function and constraints. Ding considers the cases where 

the total number of flights is greater than the number 

available gates and makes minimum number of flights 

not assigned to gate and the three kinds of passengers’ 

the minimum walking distances as the optimization 

objective. On the basis of neighborhood search 

technique in Xu and Bailey (2001), the authors proposed 

a new more efficient neighborhood and a tabu search 

method to solve AGAP (Ding et al., 2004). Kim et al. 

(2010) have proposed an improved Tabu Search (TS) 

algorithm with the objective of minimizing the sum of 

the aircraft movement time and passenger movement 

time in terminal area. They regarded the movement time 

of the aircraft in terminal as a kind of movement time of 

the passengers. Dorndorf et al. (2007) gives a detailed 

overview of the airport gate assignment problem. 

The process of arrival and departure of flights is the 

whole one which needs multi-party cooperation and 

coordination and gate assignment and runway 

assignment are two of the most important stages of the 

process. In this study, we set the average taxi time of 

flight as the objective to explore the gate and runway 

assignment problem. 

 

GATE AND RUNWAY COMBINATIONAL 

OPTIMIZATION MODEL 

 

Problem and symbol definition: Given no taxiway 

congestion or glide path selection, a single flight’s 

taxiing time between particular gate and runway is 

fixed. Therefore, a reasonable assignment of gate and 

runway combination can effectively reduce the average 

taxi time of the flight. In this study, we assign gate and 

runway combination to minimize the average taxi time 

of the flight, for easy discussion, the model assumes that 

the taxi time between the specific gate and runway is 

fixed. 

Before introducing the model formulation, the 

notations and symbols used are listed. 

 

Decision variables: xijk: assignment variable; 1 if the k
th 

flight is assigned to the i
th

 gate and the j
th

 runway; 0 

otherwise. 

 

Parameters and sets: 

F :  Set of flights need to be assigned {f1, f2,……., fp} 

G :  Set of gates available to flights {g1, g2,……, gn} 

R :  Set of runways available to flights {r1, r2,……, rm} 

P : Set of gate and runway combinatorial pairs {p1, 

p2,……, pn*m} 

M :  A sufficiently large number 

t
buff 

:  A buffer time between two consecutive flights 

assigned to the same gate 

ti
in 

:  Arrival time of the i
th
 flight 

ti
out 

:  Departure time of the i
th
 flight 

tij :  Taxi time from the i
th

 gate to j
th
 runway 

bij :  The time interval between flight i and flight j that 

are consecutive flights assigned to the same gate 

hk :  The passenger number of flight k 

 

Constraints of gate and runway: Gate can be 

categorized into three types such as large one, medium 

one and small one according to the type of aircraft or 

near gate and far gate according to the location of gate, 

or cargo gate and exclusive gate according to the usage 

characteristics of gate. Airport operation monitoring 

department assigns the appropriate gate according to the 

current state of gate and aircraft type. Let flight fi be 

assigned to gate gi, G(i) represents the set of gates 

available to the ith flight, here follows: 

 

gi ∈ G(i) 

 

If the time of two flights overlaps, these two flights 

cannot be assigned to the same gate and runway 

combinatorial pair. The constraint follows: 

 

Fjiji

xxMtttt pqipqj

in

i

out

j

in

j

out

i

∈∀≠

−−≤−−

,,

)2())((

 
 

In general case an aircraft serving a flight may be 

assigned to different gates and runways for arrival and 

departure processing and for optional intermediate 

parking; however, this study assigns such an aircraft to 

the same gate and runway combinatorial pair. 

In practice, the two flights assigned to the same gate 

must be separated by a certain time interval, i.e., buffer 

time. Figure 1 shows the situation where the time 

interval of two consecutive flights assigned to the same 

gate is less than the buffer time. A buffer time between 

two  consecutive  flights  that  are  assigned  to  the same  
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Fig. 1: Infeasible gate assignment with insufficient time 

interval 

 
gate may improve the robustness of the assignment for 
there is some spare time for the situation where the first 
flight is delayed. The constraint follows: 
 

bij≥t
buff 

 
Based on the above analysis and the mathematical 

definition, the objective function of gate and runway 
combinatorial optimization model is as follows: 
 

)}()(min{)( 21 fzfzfg βα +=  
 
The above formula expresses the objective of 

minimizing the linear function with weight factor α and 
β where α≥0, β≥0. 

With respect to flight fk, we get a weight by 
assigning this flight to gate and runway combinatorial 
pair pij. In this study, we let the taxi time as this kind of 
weight, i.e., Ck = tij. Hence, here is the definition of 
average taxi time of flight: 
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It’s quite difficulty to assign two consecutive flights 

to the same gate without violate buffer time constraint 
when it nearly comes to the extreme of gates capacity at 
the peak times. Therefore, the buffer time constraint is 
relaxed in this study, but not the overlap constraint, so 
that two consecutive flights with less time interval than 
the buffer time can be assigned to the same gate and 
then we get the difference between t

buff
 and bij which can 

be used to evaluate the assignment. However, it is 
desirable to keep the number of this kind of assignment 
as low as possible. Hence, there is: 
 

∑ ∑
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where,  
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In addition, flights to which no available gates can 

be allocated should be assigned to the apron. However, 

the apron, as a special gate, does not contain the time 

overlap constraint and the aircrafts’ type constraint for 

flights assigned to the apron. We assume that the taxiing 

time between apron and runway is a fixed value which is 

significantly higher than the ones between gate and 

runway. 

 

Gate and runway combinatorial optimization 

model: The gate and runway combinatorial assignment 

problem can be summarized in the following 

optimization model: 

 

∑
∈

+
Fff

fzfz
|

21 ))()((min βα                                (1) 

 

subjects to:  
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gi ∈ G(i)                                                                 (3) 
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A DISCRETE PARTICLE SWARM 

OPTIMIZATION ALGORITHM  

SOLVING MODEL 

 

Particle Swarm Optimization (PSO) Algorithm was 

first proposed by Eberhart and Kennedy (1995) to solve 

the optimization problem of continuous functions. 

Kennedy and Eberhart (1997) proposed a discrete binary 

particle swarm optimization algorithm for solving 

problems with discrete change of variables in the 

solution space. Position vector in this version is the 

binary vector, but velocity vector remains continuous 

floating-point vector. Each dimension of the velocity 

vector expressed the probability of the corresponding 

dimension values of the position vector being 1 or 0. 

Subsequently, there are different discrete versions of 

particle swarm optimization having been proposed for 
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different problems. In this study, we proposed a discrete 

particle swarm algorithm for solving the gate and 

runway combinatorial optimization problem through 

analyzing of the characteristics of this problem and used 

a new form of the position vector and position update 

strategy. 
 

Neighborhood search method: In this study, we use 
the neighborhood search method that consists of three 
different moves, namely the Insert Move, the Exchange 
Interval Move and the Apron Exchange Move. The 
Insert Move is basic and was given a detailed analysis in 
Xu and Bailey (2001), the Exchange Interval Move and 
the Apron Exchange Move were proposed by Ding et al. 
(2004) and a detailed analysis can be found in their 
work. The experimental results show that the three 
moves have a good performance. Here, we just give a 
brief description for reference: 
 

• Insert move: Move a single flight to a gate other 
than the one it currently assigns. 

• Interval exchange move: Exchange two flight 

intervals in the current assignment. A flight 

interval consists of one or more consecutive flights 

in one gate. 

• Apron exchange move: Exchange one flight 

which has been assigned to the apron with a flight 

that is assigned to a gate currently. 
 

Position vector encoding: In this study, the position 
vector is an m+1 dimensional vector, where m is the 
number of gates. Each dimension of the position vector 
consists of flight the set of flights allocated to the 
corresponding gate. The flights assigned to the same 
gate, in accordance with the allocation to the runway, 
can be divided into multiple sub-sequences. Obviously, 
the encoding scheme has a certain hierarchy. In 
continuous version and the binary version of particle 
swarm algorithm, the position vector of each dimension 
can be considered a value in the real number domain, 
while each dimension of the position vector in this 
study can be considered a value in the collection 
domain. Mark {S1 … Si … Sm, Sm+1} for a assignment 
scheme, then Si, the i-th dimension of position vector, 
denotes the collection of flights assigned to the i-th gate 
which, according to the allocation to the runway, can be 
divided into multiple sub-sets. 
 
Position updating strategy: In this study, the way of a 
particle updating its position is as follows: 
 

)),((

)),(())(*(
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where,  

N(X
t
i) : The neighborhood of particle’s position X

t
i 

which is described in detail in the first section 

of his chapter 

pB
t
i : The i

th
 particle’s individual extreme value 

which represents the best value that a particle 

has obtained 

gB
t
 : The global extreme value of the swarm which 

represents the best value that all the particles 

have obtained 

ω  : The inertial weight and ]1,0[∈ω  
k  : The attenuation factor used to control the 

impaction of the inertia weight on the position 

update operation 
c1  : The “cognition” factor which coordinates the 

pace  by  which  a particle flies to pBti and 

c1∈[0, 1] 
c2 : The “social” factor which coordinates the pace 

by which a particle flies to gB
t
i and c2∈[0, 1]

  
 

The above equation consists of 3 parts where the 

meaning of ⊕ operator is to select any one operand. 

The detailed description of each part is the following: 

The first component represents the reflection of a 

particle on its own velocity, that is: 
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where, N(X
t
i) represents the velocity of a particle. 

The second component is the cognition part of the 

particle representing the private thinking of the particle 

itself, that is: 
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The third component is the social part of the 

particle representing the collaboration among particles, 

that is: 
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For the Ca,b (X, Y) operator in position update strategy, 

inspired by the crossover operator of the genetic 

algorithm, the output of the Ca,b (X, Y) operation 

consists of the a-th and b-th dimensions from Y and the 

other dimensions from X. Usually, the output may 

contain duplicate flights or miss out some flights, so the 

following adjustment is needed. For easy discussion, 

let’s denote the output of the Ca,b (X, Y) operation as 

X’. First, keep the a-th and b-th dimensions of X’ 

unchanged; then, delete repeated flights in other 

dimensions; finally, insert all the missed flights into the 

(m+1)-th dimension of X’. 
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Fig. 2: Hybrid discrete particle swarm optimization algorithm flow chart

 

In the PSO system, pB
t
i and gB

t
 

messages to the particle itself or other particles by the 

position update strategy, respectively, to lead the 

particles to the local optimum and global optimum 

direction of evolution. The particles are mainly 

concentrated in and near the area of pB

drive particle swarm gradually to evolve in the direction 

of the optimal solution. pB
t
i and gB

t
 have a significant 

impact on the optimization performance of PSO; but, 

PSO tends to make excessive exploration of 

gB
t
 which leads to premature convergence of the 

algorithm in local optimal solution. In PSO, the inertia 

weight controls the balance of global and local search 

(Shi and Eberhart, 1998). Therefore, we, by introducing 

the attenuation factor k to adjust the iner

the particles more opportunity to explore at their own 

pace in the beginning of the algorithm. With the 

increase in the number of iterations, we gradually 

increase the impact of p B
t
i and pB

t
 on the particle and 

finally we improve the algorithm both loc

search capability. 

 

Initial population: Ding proposed a greedy algorithm 

to minimize the number of un-gated flights

to produce the initial solution of tabu search algorithm 

which improved the efficiency of tabu search algorithm 

(Ding et al., 2004). In this study, the above greedy 

algorithm (initial Soloution) is used to get the initial 

position, the basic steps are: 
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2: Hybrid discrete particle swarm optimization algorithm flow chart 

 transit their own 

messages to the particle itself or other particles by the 

position update strategy, respectively, to lead the 

particles to the local optimum and global optimum 

direction of evolution. The particles are mainly 

pB
t
i and gB

t
 which 

drive particle swarm gradually to evolve in the direction 

have a significant 

impact on the optimization performance of PSO; but, 

PSO tends to make excessive exploration of pB
t
i and 

which leads to premature convergence of the 

algorithm in local optimal solution. In PSO, the inertia 

weight controls the balance of global and local search 

). Therefore, we, by introducing 

to adjust the inertia weight, give 

the particles more opportunity to explore at their own 

pace in the beginning of the algorithm. With the 

increase in the number of iterations, we gradually 

on the particle and 

finally we improve the algorithm both local and global 

Ding proposed a greedy algorithm 

gated flights and used it 

to produce the initial solution of tabu search algorithm 

which improved the efficiency of tabu search algorithm 

). In this study, the above greedy 

Soloution) is used to get the initial 

Begin 

Sort flights by departure times t

Let gk (1≤k≤m) represents the earliest available 

time (the departure time of last flight) of gate 

Set gk = -1 for all k. 

For each flight i, 

Begin 

Find gate k such that gk<ti
in

 and 

If such k exists, then assign flight 

gk = ti
out

 + t
buff

. 

If k does not exist, then assign flight 

 End 

End 

 

A discrete particle swarm optimization algorithm:

After the above analysis, we present the discrete 

particle  swarm  optimization  algorithm 

Fig. 2. 

The   algorithm   parameters  are

ω = 0.509,  c1 = 0.429,  c2 = 0.638, 

k = 1/log (10 * N) where N is the number of iterations 

of the algorithm. 

 

COMPUTATIONAL RESULTS

 

In this study, the size of each test instance is 

expressed with p*n*m, where p is the number of flights,

n is the number of gates and m

runways. This study assumes that 

ti
out

 (1≤i≤n).  

) represents the earliest available 

time (the departure time of last flight) of gate k. 

and gk is maximized. 

exists, then assign flight i to gate k, update 

does not exist, then assign flight i to the apron. 

A discrete particle swarm optimization algorithm: 

After the above analysis, we present the discrete 

algorithm  illustrated in 

are  set  as  follows: 

= 0.638,  attenuation  factor  

is the number of iterations 

COMPUTATIONAL RESULTS 

In this study, the size of each test instance is 

, where p is the number of flights, 

m is the number of 

runways. This study assumes that m is a constant and
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Table 1: Comparation result of the first data set 

Prob. size 

Results of ITS 

--------------------------------------------------------------------------- 

Results of DPSO 

---------------------------------------------------------------------- 

Avg. (min) Best (min) Cpu time (sec) Avg. (min) Best (min) Cpu time (sec) 

100*15 5.77 5.76 91.0 5.76 5.74 55.7 

200*20 6.45 6.44 158.3 6.45 6.44 84.0 

300*30 6.32 6.31 229.3 6.31 6.31 104.0 
400*40 6.18 6.17 276.0 6.17 6.15 220.3 

500*50 6.24 6.23 354.3 6.21 6.20 397.3 

600*60 6.43 6.42 458.7 6.42 6.42 712.7 
700*70 6.58 6.58 558.7 6.56 6.55 1649.0 

800*80 6.88 6.87 675.7 6.82 6.82 3864.3 

900*90 6.74 6.73 787.3 6.71 6.70 1997.3 
1000*90 6.95 6.97 886.8 6.99 6.98 2547.5 

 

Table 2: Comparation result of the second data set 

Prob. size 

Results of ITS 
--------------------------------------------------------------------------- 

Results of DPSO 
---------------------------------------------------------------------- 

Avg. (min) Best (min) Cpu time (sec) Avg. (min) Best (min) Cpu time (sec) 

100*9 6.67 6.53 174.3 6.60 6.52 138.0 

200*16 7.28 7.25 167.3 7.06 7.03 188.0 
300*25 7.00 6.97 223.7 6.99 6.97 587.3 

400*30 7.02 7.02 300.3 7.01 6.98 738.0 

500*36 7.45 7.44 388.3 7.47 7.46 774.3 
600*45 7.26 7.23 463.0 7.25 7.23 2601.7 

700*52 7.46 7.41 600.7 7.44 7.42 1170.0 

800*59 7.46 7.45 625.0 7.47 7.46 2576.0 
900*65 7.66 7.65 757.2 7.69 7.68 4607.6 

1000*71 7.82 7.81 826.5 7.86 7.86 5925.8 

 

set its value to be 3. So the size of the problem can be 

simplified as p*n. Let fi is the i-th flight and then we 

choose a random value from interval [0, 900] as the 

value of ti
in

 and one from interval [ti
in

 + 40, ti
out

 + 60] as 

the value of ti
out

. With the observation of actual airport 

operations about flights, we choose a random value 

from interval [5, 30] as the value of tij. The value of t
buff

 

is 15. Weight factors α and β are set to be 1 separately.  

In this study, we use the above approach to 

generate two sets of experimental data; each 

experimental data consists of 10 test cases and for each 

case we separately run 10 times ITS algorithm proposed 

in Xu and Bailey (2001) and the discrete particle swarm 

algorithm. The first set of experimental data does not 

have flights unassigned to gates, which corresponds to 

the situation of an adequate supply of gates. The second 

set of experimental data contains flights unassigned to 

gates, which corresponds to the situation of a short 

supply of gates in the peak of the flight times. Table 1 

and 2 show the results of the experimental tests. 

From the Table 1, we see that DPSO algorithm 

provides better solutions than ITS. The DPSO 

algorithm takes a relatively long running time. 

However, Even if we increased the number of iterations 

in the ITS method, we are not likely to get results as 

good as those from the DPSO algorithm. This shows 

that in sufficient supply of gates case, the discrete 

particle swarm algorithm is superior to the ITS 

algorithm. From the Table 2, we see that DPSO 

performs not better in the second data set than the first 

one. But the DPSO algorithm still provides better 

solutions than ITS, which indicates that in insufficient 

supply of gates case, the discrete particle swarm 

algorithm is still superior to the ITS algorithm. 

 

CONCLUSION 

 
This study focus on the gate and runway 

combinatorial assignment problem and the objective is 
to minimize the average taxi time of the flight. We 
proposed a gate and runway combinatorial optimization 
model and design a hybrid discrete particle swarm 
optimization algorithm to solve this model. We use a 
neighborhood search method as the particle’s thinking 
of its own speed and inspired by the crossover operator 
in the genetic algorithm, we use the similar operation to 
the crossover operator as the self-perception and social 
cognition part in position update strategy. Finally, 
numerical experiments show that, compared to the ITS 
algorithm, the discrete particle swarm optimization 
achieves better results within a reasonable period of 
time. 
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