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Abstract: In this study, we generalize the conception of orthomorphisms and  obtain a counting formula on the 
generalized linear orthomorphisms over the Galois field with the arbitrary prime number p as the characteristic. 
Thus the partial generation algorithm of generalized linear orthomorphisms is achieved. The counting formula of the 
linear orthomorphisms over the finite field with characteristic 2 is the special case in our results. Furthermore, the 
generalized linear orthomorphisms generated and discussed in this study can gain the maximum branch number 
when they are designed as P-permutations. 
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INTRODUCTION 

 
In modern cryptology, the Feistel and SP structures 

are two kinds of symmetrical cipher structure with 
widespread application (Haiqing and Huanguo, 2010). 
These two structures include both S layer and P layer, 
where S means the confusion level that consists of 
several juxtaposed S-boxes and plays an important role 
of confusion for security safeguard of cryptosystem. 
Where P layer, the P-permutation refers to the diffusion 
layer, mainly plays a diffusion role to constitute 
generally by the linear substitution in the majority 
situations. For the validity and the usability in the 
design of cryptosystems, the cryptosystem can be 
divided into S-box and P-permutation because the 
design of the modern cryptosystem is getting more and 
more complex (Huanguo et al., 2003). This study 
defines the over all linear transformation in 
cryptosystem as the P-permutation.  

The orthomorphism is a kind of complete mapping, 
which has a good crypto logic performance: perfectly 
balanced (Lohrop, 1995), which becomes one focus of 
research in the cryptography domain. Teledyne 
Corporation has developed DSD cryptographic 
products based on the orthomorphism (Lohrop, 1995). 
Yusen et al. (1999) and Dawu et al. (1999) have studied 
the application of the orthomorphism in the 
cryptography. The orthomorphisms over the finite field 
are in widespread application and  the current study has 
focused on the calculation and general algorithm of the 
orthomorphism. In Yong and Qijun (1996) obtained the 
counting formula of all linear orthomorphisms over the 
Galois field ��

� using the recurrence relation. Zongduo 
and Solonmen (1999) designed the generation 

algorithm without repetition of all linear 
orthomorphisms over the Galois field ��

�.     
At present, taking into account of the specific 

application of linear orthomorphisms in cryptography 
the linear orthomorphisms over the finite fields ��

�are 
very suitable for designing the P-permutation. The 
important cryptographic indicator to measure the P-
permutation is the branch number, the greater the 
branch number, the better the cryptographic property 
(Haiqing and Huanguo, 2010). The linear 
orthomorphisms over the Galois field ��

� may be 
represented by an 8 square matrices (Yun and Hongwei, 
2002; Zhihui, 2002). But the square matrices on F2 
treated as the P-permutation can’t attain the optimal 
cryptology nature, because the maximum branch 
number of matrices below on 8 order will not surpass 5 
(Ju-Sung et al., 1999). 

For certain reason, it is shown that the branch 

number of the P-permutation ground on linear 

orthomorphism can’t achieve the optimal result. It was 

found out that the generalized linear orthomorphism 

may overcome the defect and the calculation formula 

and constructed algorithm were not recommended. So 

we have promoted the conception of orthomorphisms in 

this study and have found the calculation formula on 

the generalized linear orthomorphism over the general 

Galois field ��
�. We have the partial general algorithm 

of generalized linear orthomorphism.  

 

PRELIMINARIES 

 

Let �� = {0,1} be a binary finite field. ��� or 

GF(2
n
) is the n-degree extension field of ��，it also can 
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be considered that the n -dimension linear space on ��. 

Generally, let ��  be the finite field with an arbitrary 

prime number characteristic p, namely q = p
k
. Similarly, 

��
� is the extension field of ��with degree n. 

 

Definition 1: Let S be a permutation on ��
�，and  I is 

the identity permutation on ��
�（
��� = �, ∀� ∈ ��

�). If 

�⨁
 is still the permutation on ��
� (⨁ is the addition 

operation on ��
�), S is called the orthomorphism on ��

�. 

Further, if  ∀�, � ∈ ��
� fulfill S(x+y) = S(x)+S(y), S is 

said to be the linear orthomorphism on ��
�. 

From definition 1，when we consider the 

orthomorphism on the finite field ��
�., only ��

�. is 
regarded as an additive group. By Reference (Hall and 

Paige, 1957), if � ≥ 2，then the orthomorphism on ��
�. 

must exist. Definition 1 also shows that a permutation is 
an orthomorphism if and only if the sum of it and the 
identity permutation is still a permutation. The finite 

field ��
�. is a group for the addition operation, similar to 

definition 1, the orthomorphisms and linear 
orthomorphisms can also be definite. 

 
Definition 2: Let A be the reversible matrix on the 

finite field ��
�.（q = p

m 
is prime power, if for all k =1, 

2,…, p-1, the matrix A+kI is invertible on  Fq. A is said 
to be the generalized orthomorphic matrix. 
 
Definition 3: Let S be the transformation on the finite 

field  ��
�. (q = p

m 
is a prime power）, if for each integer 

k ( 1 ≤ � ≤ � − 1), S + kI (I  is the identity) is still the 

permutation on the finite field  ��
�. S is called the 

generalized orthomorphism on the finite field  ��
�.. 

Further, ∀�, � ∈ ��
� hold S(x+y) = S(x)+S(y), S is said to 

be the generalized linear orthomorphism on  ��
�. 

Similar to the Galois field of the characteristic 2, 
the generalized linear orthomorphism on the Galois 

field ��
�and the n square generalized orthomorphic 

matrix on the finite field Fq are one to one 
correspondence. 

The intention for studying the generalized linear 
orthomorphisms is to understand their crypto logic 
properties. In cryptography, when the Generalized 
Linear orthomorphisms are designed for P-permutation, 
we take into account about that the main cryptography 
indicator is the branch number, defined as follows. 
 

Definition 4: Let �: ��
� → ��

� be a linear 

transformation, for all " = �#$, #�, … , #�� ∈ ��
�，let 

&'�"�  be  the  number    of    the   non-zero 

component #(�1 ≤ ) ≤ �� in ", so

{ }
0

( ) min ( ) ( ( ))h hB P W W P
α

α α
≠

= + is called the branch 

number of the linear transformation P. 

Based on the above definition, for any linear 
transformation �: ��

� → ��
� there is *��� ≤ � + 1. 

According to reference (Ju-Sung et al., 1999), the crypto 
logic character of the generalized linear orthomorphisms 
is better than the linear orthomorphisms on ��

�, so the 
generalized linear orthomorphisms should be selected to 
design the P-permutation instead of linear 
orthomorphism on ��

�. 
 

MAIN RESULTS 
 

The study of the generalized linear 
orthomorphisms on ��

� has focused on counting 

formula and generation algorithms. Imitating reference 
(Yong and Qijun, 1996), we have found out the 
following counting formula. 

 

Proposition 1: Let LOPn(q) be the set of the all 
generalized linear orthomorphisms on the finite field 

��
� ( q = p

m

 
is a prime power）, if the cardinality of the 

set LOPn(q) is denoted | LOPn(q) |, then 
 

 
1

( )

1

| ( ) | ( 1) ( ) | ( ) |
kn

k n k k p p n i

n n k

k p i

LOP q q q q q LOP q
−

− + −
−

= =

= − −∑ ∏
 

 

where � ≥ �，and | LOPn-k(q) |    is the number of the 

all  linear  orthomorphisms  on  the   finite  field   
GF(q

n-k
). We stipulate | LOP0(q) |= 1 , | LOP1(q) = 0  ,  

But | LOP2(q) | ,…, | LOPp-1(q)|  need to be calculated in 
addition. 
 

Proof: It just proves the number of generalized 

orthomorphic matrix can satisfy the above formula. It 

needs simplifying the notation to help the proof.    

Let Ln express the set of the all generalized 

orthomorphic matrix on the finite field ��
�. 

,$, ,�, … , ,� denote the n dimensional column 

vectors on Fq and ,( 
denotes the vector that the i -st 

component is1 and the other component is 0. We denote

1 1( , ) { | }n nL A L Aε α ε α= ∈ = . If A is the generalized 

orthomorphic matrix, then " ≠ .,$ where . ∈ �� in 

accordance with its definition. Ln  can be divided into 

q
n
 - q classes using α We have the formula:  

 

1
| | ( )| ( , )|n

n n
L q q L ε α= −  

 

There is one to one correspondence between 

/��,$, "� and /��,$, ,�� for all " ∈ ��
� may be proved. 

Namely： 

 

1 1 2
: ( , ) ( , )

n n
L Lϕ ε α ε ε→

 
 

1: A B T ATϕ −=a  
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where, 01$�,$, ", 23, … , 2��，,$, ", 23, … , 2� 
is the 

basis ��
�over Fq which is the extension by ,$, ". It is 

clear that 01$,$ = ,� ⟹ 0,$ = ,$ And 01$,� =
"，that is 0" = ,�，therefore, * ∈ /��,$, ,��. 

Similarly, when � ≥ 2, we can define 
 

1 2 1
( , , , ) { | , 2 }

n k n i i
L A L A i kε ε ε ε ε−= ∈ = ≤ ≤L  

 

For 5,6 = "，" can be selected from two sets:  

 
 " ∈ ��

� ∖ 8�#�{,$, ,�, … , ,6}                (1) 

 
where 8�#�{,$, ,�, … , ,6}  is the vector space that is 
span  by  the  linearly  independent vectors 

1 2, , , kε ε εL ;  

 

1 2

2 2 3 3 2 2 1

1

{ , , , }

\{ , ( )

( ) |

, ,1 1, 2 }

k

k k k

k k k

i i q

span

c c c t d t

d t

c d F t p i k

α ε ε ε

ε ε ε ε ε ε

ε ε −

∈

+ + + + +

+ + +

∈ ≤ ≤ − ≤ ≤

L

L

L

           (2)

 
 
It is easy to know the number of elements is (q

n
 – 

q
k)

 in (1). 
The following proofs that the number of elements 

is  q
k(n-k)+k-p

(q-1)
p 
in (2). 

Since 5,(1$ = ,( , 2 ≤ ) ≤ � and 5,6 = " = 9$,$ +
9�,� + 96,6，A must have the following form:  

: ;<    =
>     ?@A<

B  ，where, Ck , An-k denote kand (n-k) square 

matrix respectively. Calculate Ck 
and it has the form as 

follows:  
 

1

1

0 0

1 0

0

0

0 0 1

k

k

c

c

c

−

 
 
 
 
 
 
 
 

L L

L M M

O O M M

M M O

L

 

 
The characteristic polynomial of the matrix Ck is 
 

1

1 2( ) | | k

k kf I C c c cλ λ λ λ −= − = + + +L .  

 

: ;<    =
>    ?@A<

B   is the generalized orthomorphic matrix 

if and only if  Ck, An-k is the generalized orthomorphic 
matrix by the definition of the generalized 
orthomorphic matrix on Fq, so the characteristic roots of 
f(λ) = |λI - Ck| can’t be 0,1,…,(p-1), that is: 

 

(0) 0

(1) 0

( 1) 0

f

f

f p

≠
 ≠


 − ≠

M

 

where, 0, 1, …, (p − 1) are all in the subfield of Fq as 

well as in Fq. 
Find the number of the solution in following 

equations system. 
 

01

121 1

11

1 0 0

1 1 1

1 2 2

1 ( 1) ( 1)

k

pkk

ac

ac

ac
p p

−

−−

 
   
   
    =
   
         − − 

L

L

L
MM

M M L M

L

  

 
that requirement a0,a1,…ap-1 are all not 0.  

(a0, a1, …, ap-1)
T 

Can be taken (q-1)
p
  possible values, 

where 
1 2, , , kc c cL are viewed as unknown variables. 

The solution of the above equation system exists if and 

only if that the rank of the augmented matrix equal to 

the rank of the coefficient matrix. The coefficient 

matrix is row full rank, so the solution of the above 

equation systems must exist and the dimension of the 

solution vectors space is (k-p). There are q
k-p 

 solutions 

(c0, c1,…ck)
T 

 given the value (a0, a1, …, ap-1)
T
, the value  

(c0, c1,…ck)
T 

 has  q
k-p

(q-1)
p

 
classes. Namely, the 

number of the generalized orthomorphic matrices 

formed Ckis q
k-p

(q-1)
p
. 

The matrix D in A = : ;<    =
>    ?@A<

B  has k rows and n – 

k column, which has q
k(n-k)

 cases to select. It will prove 

the opinion when  " fall in (2). If we denote: 

 

1 2

1

( , , , , )

{ | , , 2 }

n k

n i i k

L

A L A A i k

ε ε ε α

ε ε ε α−

=

∈ = = ≤ ≤

L
 

 

then the number is: 

 
( )

1 2| ( , , , , ) | ( 1) | |k n k k p p

n k n kL q q Lε ε ε α − + −
−= −L   

 

We have obtain the Recurrence relation: 
 

1 2| | ( ) | ( , ) |
n

n nL q q L ε ε= −
 

 

If � ≥ 2then 

 

1 2 1 2

1 2

( , , , ) [ ( , , , , )]

[ ( , , , , )]

n k n k

n k

L L

L

α

β

ε ε ε ε ε ε α

ε ε ε β

=L L

L

U

U U
 

 

⋃ /�D �,$, ,�, … , ,6, "� denotes that " is taken from (1). 

Therefore, the counting formula is: 

 
|⋃ /�D �,$, ,�, … , ,6, "�| =  

 1 2 1( ) | ( , , , ) |n k

n kq q L ε ε ε +− L
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⋃ /�F �,$, ,�, … , ,6, G� denotes that " is taken from (2). 

 

1 2| ( , , , , ) |n kL
β

ε ε ε βLU = 

 
( ) ( 1) | |k n k k p p

n kq q L− + −
−−

 
 

Note 
1 2( , , , , , ) 0n k nL ε ε ε ε =L L

 
 

Summarily,  

 
1

( )

1

| | ( 1) ( ) | | ( , )
kn

k n k k p p n i

n n k

k p i

L q q q q L n k p
−

− + −
−

= =

= − − ≥∑ ∏  

 

we stipulate |/H| = 1, |/$| = 0 and |/�|, … , I/J1$I  
need to be calculated separately.  

There are two advantages to calculate 

|/�|, … , I/J1$I  :  
 

• The order of matrices are relatively small  

• The matrix structure with small order can be 

converted to study the root of the characteristic 

polynomial that does not exist in the prime subfield 

�J of ��.This proposition is complete. 

 

For example, if p = 3 in the above proposition, | L2 | 

needs to be calculated, so long as let A = KL    M
N    OP ∈

/� ，Only the number of the polynomials form needs to 

be calculated. 

 

( ) | |f I Aλ λ= − = 2 ( )a b ad bcλ λ− + + −  
 

Satisfies  f(0)≠ 0, Q�1� ≠ 1. 

This proposition is the promotion of the conclusion 

in reference (Yong and Qijun, 1996). If we take q = p = 

2then the counting formula of the n square 

orthomorphic matrices on ��
� should be obtained. 

The generalized orthomorphism on finite fields 

��
�can be represented and denoted by the permutation 

polynomials and the multi-output Boolean function. 

Hence we will give the following conclusions without 

proof because it is relatively simple.  

 

Proposition 2: Let Q��� be a permutation polynomial 

on ��
�, Q��� is the orthomorphic polynomial if and only 

if Q���, Q��� + ���
 ≤ � ≤ � − 1� are the permutation 

polynomials. 

 

Proposition 3: Let F(X) be a multi-output Boolean 

function on ��
�, F(X) is the orthomorphic multi-output 

Boolean function if and only if  ����, ���� + �
�1 ≤
� ≤ � − 1 (I is the identity) are the multi-output 

Boolean functions。 

 

Proposition 4: Let  S be a generalized orthomorphism 
on ��

�, if Tis an arbitrary linear permutation on  ��
�, 

then T
-1

AT is still a generalized orthomorphism. 
The conception of the companion matrix can be used 

to generate a generalized linear orthomorphism.  
 

Let 1

0 1 1( ) [ ]n n

n qf x a a x a x x F x−
−= + + + + ∈L   

 
be an irreducible polynomial, the: 

n n× Matrix 

 

0

1

2

1

0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 1
n

a

a

A a

a −

− 
 − 
 = −
 
 
 − 

L

L

L

M M M L M M

L
 

 
is said to be the companion matrix of Q���. In the 
application, the generalized linear orthomorphism on 
the finite field ��R is considered and  the characteristic 
is 2. A specific idea is that firstly to find a frobenius 
canonical matrix, secondly to get a generalized 
orthomorphic matrix through a similarity 
transformation, finally to calculate the branch number.   
 

Proposition 5: Let A be the companion matrix of  Q��� 

over the Galois field，if and only if #H ≠ 0, #$ + #� +
⋯ + #�1$ ≠ 0. 

From the proposition 1 to the proposition 5, we have 

got the generation algorithm of the generalized linear 

orthomorphism of degree n  on ��R, which are as 

follows: 
 

Algorithm 1:  
Step 1: Find an irreducible polynomial Q��� ∈ ��R[�] 

of degree n, or find a manic polynomial 

Q��� ∈ ��R[�] of degree n so that f(0) 

≠ 0, Q�1� ≠ 0。 

Step 2: Write  out the companion matrix Cf
 

of the 
polynomial  f(x) 

Step 3: Choose any invertible matrix A over ��R and  
carry on the similarity transformation Cf to 
5VW51$. 

Step 4:  Obtain   the    output  5VW51$,   that  is the 

generalized linear orthomorphism. 

 

Proof and complexity analysis of the algorithm: The 

companion matrix Cf of the polynomial f(x) must be 

orthomorphic matrix according to the proof of 
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proposition 1, then 5VW51$ is the generalized linear 

orthomorphism from proposition 4. The complexity of 

the algorithm depends on step1 and step3. It needs to 

determine the irreducibility polynomial f(x) in step1 or 

demands to judge f(0)≠ 0, Q�1� ≠ 0, which can be 

completed in polynomial time complexity; The key is to 

determine the reverse of the matrix A in step3, of which 

the time complexity is O(n
3
). The complexity of the 

algorithm is not greater than that of the polynomial 

complexity summing up Step1 and Step3.  

 

Algorithm 2 

 

Step 1: Find two matrices A and C, they are 

generalized orthomorphic matrices with small 

order over  ��
� 

Step 2 : Find an arbitrary  matrix B, make K;  X
>  ?P is a 

square matrix. Remark the matrix B need not 

be the square matrix 

Step 3 : Choose any invertible matrix P and  carry on 

the similarity transformation   �K;  X
>  ?P �1$ 

 

Proof and complexity analysis of the algorithm will 

be omit because it is obvious. 

 

CONCLUSION 

 

The study of general linear orthomorphism on the 

finite field ��
� has achieved good result , but the 

generation algorithm of all generalized linear 

orthomorphisms needs to be studied in depth and  the 

algorithm presented in this study can only generate 

some linear orthomorphism but not all. Furthermore, 

the generalized maximum linear orthomorphism 

(Zhihui, 2004) and the generalized nonlinear 

orthomorphism need strengthening the study.  

In the cryptosystem, the nonlinear parts are 

important barriers of security threats. The nonlinear 

component in the design is important that we must fully 

consider the cryptographic properties and make it resist 

the linear, differential and algebraic attacks. It’s the 

nonlinear orthomorphisms on GF(2
8
) rich raw materials 

that is the key of designing the non-linear cryptology 

components. It is the next major task that the 

generalized linear orthomorphisms on ��R
�  and the 

nonlinear orthomorphisms on  GF(2
8
) are used to design 

the crypto logic algorithms. 
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