
Research Journal of Applied Sciences, Engineering and Technology 5(14): 3803-3809, 2013

DOI:10.19026/rjaset.5.4528

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: October 12, 2012 Accepted: December 03, 2012 Published: April 20, 2013

Corresponding Author: Rabee Sharifi Rad, Sirjan University of Technology, Kerman, Iran
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

3803

Research Article
Ada in Real-time Embedded System

1
Sima Sinaei,

2
Rabee Sharifi Rad and

3
Elnaz Ghodsvali

1
Tehran University Tehran, Iran

2
Sirjan University of Technology, Kerman, Iran

3
Amir Kabir University Tehran, Iran

Abstract: Ada has an important role in the real-time/embedded/safety-critical areas. It is the only ISO-standard,
object-oriented, concurrent, real-time programming language. Ada is used as a usual language for application areas
such as defense embedded systems that reliability and efficiency are very essential. One of the main Ada’s
characteristics in compare with other programming languages is that, Ada was developed from the ground up with
capabilities that provide real-time requirements. In this study it will be shown why Ada is used as the new standard
for real-time programming languages and basic characteristics of real-time programming system in general and how
they are addressed in Ada will be explained.

Keywords: Ada, real-time system, real-time, reliability, scheduing

INTRODUCTION

A Real-time system is a system which process

information and the correctness of its functioning
depends on the results and the time of producing this
result www.adacore.com. In these systems deadline is a
significant factor. Practitioners in the field of real-time
computer system design often distinguish between hard
and soft real-time systems. If missing a deadline leads
to complete loss of the task, it is hard real-time and if
missing a deadline allows the task to continue by
compromising some objectives, it is soft real-time.
Facing these tight deadlines can be enhanced by using
Ada’s real-time standards.

United States Department of Defense realized that
billions of dollars was being spent annually on
`military' software and especially on the maintenance of
real-time and embedded systems. They decided to find
a programming language suitable for the department's
requirements. The result was Ada. The total number of
high-level programming languages in use for such
projects fell from over Hundreds in 1983 to Less than
forty by 1996. Ada is not limited only for defense
contracts anymore and nowadays it is a useful
programming language for a lot of different embedded
projects such as railway signaling, air traffic control
and other usages.

The language became an ANSI standard in 1983
and without any further changes became an ISO
standard in 1987. Ada 95, the joint ISO/ANSI standard
is another standard for Ada. In 2005, Ada became an
ISO standard. The current version of the Ada language
standard is known as Ada 2005.

There has been much research in the area of real-
time system requirements (Lee and Nehman, 1991).
Provides an overview of several issues concerning real-
time programming in general and how they are
addressed in the primary version of Ada. The primary
version was not able to handle some of these issues.

As we mentioned above, Ada improves gradually.
By improving Ada and innovation of Ada 2005 as a
new standard for real-time applications we consider
how these issues would be addressed. This study
explains some of basic characteristics of real-time
programming and how they implement in the latest
version of Ada. It considers if Ada 2005 is enable to
solve these shortcomings.

BASIC CHARACTERISTICS OF REAL-TIME

PROGRAMMING

Concurrency, Time and Clock Facilities,

Scheduling, Facilities for Hardware Control, Priority
Inversion and Asynchronous Transfer of Control are
some of important issues in the real-time programming
(Lee and Nehman, 1991). In each part of this section,
these issues will be presented by a short synopsis of its
implementation in Ada.

Concurrency: To solve real world problems, it is

required programs to exhibit concurrent because the

problems in real are inherently concurrent. Therefore

Real Time Systems must have high degree of

concurrency. The Languages for writing real-time

programs should allow multiple threads of control. A

Res. J. Appl. Sci. Eng. Technol., 5(14): 3803-3809, 2013

3804

process is defined as the notion of single thread of

control. Three basic facilities should be provided for

process to be able to deal with concurrency:

Programming should be done with simultaneous

processes, Processes should be synchronized and

processes should communicate with each other.

It is possible to classify processes in several topics.
We can separate them as independent and cooperating
or competing. Independent processes define as a
process which do not communicate or synchronize with
each other. Cooperating processes do communicate and
are synchronous with each other. Competing processes
only communicate and synchronize with each other
until they are competing for use of a limited number of
resources. Processes also classify as static or dynamic.
Static process are kind of processes in which the
number of processes is fixed but dynamic processes can
be created or destroyed at any time.

In Ada, the conventional unit of parallelism, the
sequential process, is termed the task. A periodic task is
one which has deadlines on a fixed interval; e .g. a task
which must read a sensor every Second. Precise
scheduling and takes into account how much
computation time is needed within each period before
the deadline. An aperiodic task is one which is not
periodic. Its start time is unpredictable or not regular
and it has a certain deadline based on its computational
needs. Both kinds of tasks can be built with Ada (Lee
and Nehman, 1991).

For expressing concurrent execution four basic
mechanisms are possible (Lee and Nehman, 1991):

Co-routines: Co-routines are similar to subroutines,
but the control of execution can be transformed
explicitly between subroutines non-hierarchically
(Bustard, 1990).

Fork and join: This is a simple approach which runs
the routines simultaneously with the caller and
synchronizes with the created process. This method can
be very error prone.

Co-begin and co-end: Co-begin/co-end is a Simple
way to describe running of program statements
simultaneously.

Explicit declaration: In this approach each process is
declared and created explicitly. This allows the
structure of the concurrent program to be made clearer.

Ada 2005 proposes the most powerful set of high
level concurrency features available in an imperative
language and its concurrency semantics is well and
precisely defined. Ada allows for the explicit
declaration, when the compiled program processes
declarations and finds a task declaration it starts
execution of the task. Rendezvous is defined as a basic
mechanism which let information to exchange. It is
used by Ada for both communication and
synchronization.

Fig. 1: Calendar package

Time and clock facilities: In a real-time system time

value and clocks are important in programming. They

help the system to interact between concurrent activities

and they are so helpful for communication especially

with the external environment. Measuring absolute time

and relative time are the examples of clock’s usage.

During monitoring a process and logging data, it is

necessary to know the current date and time and in this

situation Absolute time is useful. When passage of time

should be measured, for example something should

occur 5 time units from now, relative time is useful

(Burns, 2009).

A hardware clock can approximate the passage of

real-time. In some application programs should be

executed with the time of the environment so access to

a hardware clock is required.

Ada provides package CALENDAR for accessing

a clock function. It is a standard package that allows

great flexibility for absolute time. Relative time is

handled by subtracting two absolute times. In this

package a shortage is faced. An error will occur in the

intended time because of the elapsing time during the

act of measuring the time and prediction of future time

is difficult.

Calendar package which is a language-defined

library package is shown in Fig. 1.

A value of Time is consisting of the date and the

time of day and time of day is given in second from

midnight. Subtype Day-Duration describes second and

Day-Duration is defined by means of Duration. The

Duration is fixed point type and one of the predefined

Scalar types. It is implementation dependent and has a

range at least -86,400.0 to +86,400.0 (number of second

in a day). Function clock returns the current time. Split

and Time-of are subprograms which provide conversion

between time and program accessible types. The

function Time-Of combines a year number, a month

number, a day number and duration, into a value of type

time. Conversely, the procedure Split returns all four

corresponding values. In addition some arithmetic and

Package Ada.Calendar is
-- Standard Ada package, must be

-- supplied with compilers

-- provides useful services for
-- dates and times

Type Time is private;

Subtype Year_Number is Integer range 1901 .. 2099;
Subtype Month_Number is Integer range

1 .. 12;

Subtype Day_Number is Integer range
1 .. 31;

Function Clock return Time;

Function Year (Date: Time) return Year_Number;
Function Month (Date: Time) return Month_Number;

Function Day (Date: Time) return Day_Number;

End Ada.Calendar;

Res. J. Appl. Sci. Eng. Technol., 5(14): 3803-3809, 2013

3805

Fig. 2: Pragma for nested style

Fig. 3: An example of nested handler

Fig. 4: Pragma for non-nested style

Boolean operations are specified. Therefore, an

appropriate structure for an abstract data type for time

is defined by Package calendar.

Facilities for hardware control: Facilities for

hardware control should be provided by the real-time

programming languages in order that embedded

systems could interact with special-purpose hardware

devices for input and output such as sensors, probes,

actuators, switches, etc. The two principle mechanisms

controlling input/output devices are status polling and

interrupt driven. It is preferred for these devices to be

interrupt driven rather than polled so the cost of

hardware devices can be reduced (Burns and Wellings,

2006).

In Ada an interrupt is considered as hardware

generated entry call to a task. The address of the

interrupt vector is used as unique identifier for each

interrupt.

Ada handles interruption in two styles: Nested and

non-nested. In the nested style, existence of the

protected object installs an interrupt handler implicitly

and when the protected object is not existent the

previous treatment is implicitly restored. In the non-

nested style, procedure calls install the interrupt

handlers explicitly, only when an explicit request is

demanded, handlers would be restored.

A handler to be installed in the nested style is

identified by the pragma appearing in a protected

declaration that shown in Fig. 2.

Handler is the name of a parameter less protected

procedure in that protected declaration; Interrupt is an

expression of type Interrupt-ID. An example of nested

handler is given in Fig. 3 (Wellings and Burns, 2007).

A handler to be installed in the non-nested style is

identified by pragma appearing in a protected

declaration that shown in Fig. 4.

Again, Handler must be the name of a parameter

less protected procedure. As with the Attach-Handler

pragma, the protected declaration may not be nested in

a subprogram body, task body, or block statement.

However, this pragma has an additional restriction: if

the protected declaration is for a protected type, objects

of that type may not be nested in these places

either (Brosgol and Ruiz, 2007).

Scheduling: The most important issue of real-time

systems is scheduling of tasks. It is required because

each task request must complete it’s execution before

its deadline.

Process is the fundamental unit of a real-time

program for scheduling. A process is defined as the

notion of single thread of control. In scheduling each

process should terminate on its deadline or before its

deadline so it should receive enough computation time.

There are Different kinds of real time schedulers:

On-line/off-line scheduler: if the computation of

scheduling and execution time happens simultaneously

it is called online scheduler and if scheduling is

computed before execution time it is called off-line

scheduler.

Static/dynamic priority scheduler: If priority changes

at execution time it is called dynamic but static is

defined if priority remains stable.

Preemptive or non preemptive scheduler: whether

can task can be stopped during its execution time it is

called preemptive scheduler otherwise it is non

preemptive scheduler (Sha and Goodenough, 1990).

In Ada 2005 real time scheduling mode, it is

desired to consider several queues for different priority

levels. Each queue contains all tasks with the same

priority level and it has a dispatching policy. For

scheduling first the highest priority queue with at least

one ready task should be selected and then the task to

run of the queue should be chosen (Barnes, 2005).

As an Example of the preemptive FIFO-Within-

Priorities dispatching Policy When a task becomes

ready, it is inserted in the tail of its corresponding

priority queue. The task at the head of the queue gets

the processor when it becomes the highest ready

priority task/queue. When a task becomes blocked or

terminated, it leaves the queue and the next task in the

queue gets the processor.

The FIFO-Within-Priorities dispatching policy is

activated by the code shown in Fig. 5.

But Ada 2005 also provides other dispatching

policies: Non -preemptive fixed priority dispatching

Pragma Interrupt_Handler (Handler,Interrupt);

Package Nested_Handler_Example is

 protected type Device_Interface

(Int_ID : Ada.Interrupts.Interrupt_ID) is
 procedure Handler;

 pragma Attach_Handler

 (Handler, Int_ID);
end Device_Interface;

end Nested_Handler_Example;

Pragma Attach_Handler (Handler,Interrupt);

Res. J. Appl. Sci. Eng. Technol., 5(14): 3803-3809, 2013

3806

Fig. 5: FIFO_within_priorities dispatching

Fig. 6: Non-preemptive fixed priority dispatching

Fig. 7: Non earliest deadline first dispatching

Fig. 8: Round robin dispatching

Fig. 9: Different dispatching policies

which a task will run until it either blocks itself or

completes. It is shown in Fig. 6 (Singhoff, 2007).

Earliest deadline first dispatching in which

deadlines and not just priorities are used to dictate

which ready task is given the processor. A priority

range can be assigned to be governed by the EDF

policy. EDF is useful for maximizing system

responsiveness, but is less predictable than fixed-

priority policies in the presence of overload. It is shown

in Fig. 7.

Round robin dispatching is a useful traditional

policy when there is a need for fairness in task

scheduling. Ready tasks at the highest priority level are

time-sliced at a user-specified interval. It is shown in

Fig. 8.

Ada 2005 allows a program to use different

dispatching policies. Each priority level may have its

own dispatching protocol. An example is shown in

Fig. 9.

Priority inversion: In a real-time system, it is preferred

that the more important tasks execute before the less

Fig. 10: Select_statement

important ones. Priority inversion is said to occur when
a higher-priority task is forced to wait for the execution
of a lower-priority task. An Uncontrolled priority
inversion is a kind of priority inversion when duration
of priority inversion in a system is unlimited. It leads to
missing deadlines because of unbounded delays during
blocking. It is recognized as a serious problem for real-
time systems.

In Ada 95 it is tried to reduce the priority inversion
by implementing the Priority Inheritance Protocol (PIP)
and in Ada 2005 tried to solve the problem with Priority
Ceiling Protocol (PCP). According to PIP, PCP is an
extension of PIP, with the added features of preventing
deadlocks and priority inversions.

As mentioned above in Ada 95 using The Priority
Inheritance Protocol (PIP) which is based on pre-
emptive scheduling reduced the priority inversion. The
basic idea of PIP is to increase the priority if the lower
priority task to that of the highest priority task blocked
waiting for that resource when a lower priority task
blocks one or higher priority tasks. It’s after exiting its
critical section, the lower priority task returns to its
original priority level. There are two situations in which
a high priority task can be blocked by a lower priority
task. Firstly, it may be directly blocked in which a
higher priority task attempts to lock a locked
semaphore. Secondly, a medium priority task can be
blocked by a lower priority task. The priority
inheritance protocol prevents priority inversion and also
bounds blocking times, thus making interacting task
sets analyzable (Ruiz, 2007).

PIP alone does not prevent deadlocks. If two tasks
attempt to lock two different semaphores in opposite
order, a deadlock is formed. This deadlock problem can
be solved, if the programmer imposes a total ordering
on the semaphore locking. However, there can still be a
second problem. The blocking duration for a job,
though bounded, can still be substantial, because a
chain of blocking can be formed (Jim, 1995).

The Priority Ceiling Protocol (PCP) is similar to
PIP and is also based on pre-emptive scheduling. PCP
also has the following properties:

Asynchronous_Select:: =
select

Triggering_Alternative

then abort
abortable_part

end select;

Triggering_Alternative:: =

Triggering_statement[sequence_of_st

atements]

Triggering_Statement:: =

Entry_call_statement| delay_satement
abortable_part:: =

Sequence_of_statements

Pragma Priority_Specific_Dispatching

(FIFO_Within_Priorities, 4, 23);
pragma Priority_Specific_Dispatching

(EDF_Across_Priorities, 2, 3);

pragma Priority_Specific_Dispatching

(Round_Robin_Within_Priorities, 0, 1);

Pragma Task_Dispatching_Policy

(Round_Robin_Within_Priorities);

Pragma Task_Dispatching_Policy

(EDF_Across_Priorities);

Pragma Task_Dispatching_Policy

(Non_Preemptive_FIFO_Within_Priorities);

PragmaTask_Dispatching_Policy
(FIFO_Within_Priorities);

Res. J. Appl. Sci. Eng. Technol., 5(14): 3803-3809, 2013

3807

• It prevents deadlocks

• It prevents chained blocking, so a high priority task
can be blocked by at most one lower priority task,
even if the task suspended itself within the critical
section.

In addition to the direct blocking and push-through

blocking caused by PIP, PCP introduces a third type of
blocking, ceiling blocking. Ceiling blocking is needed
for the avoidance of deadlocks and chained blocking.

Ada 2005 provides a catalog of features for
implementing PCP efficiently. Semaphores can be
implemented as protected objects instead of tasks, thus
avoiding additional task overhead. Protected objects
can be used directly, to provide mutual exclusion
(Potratz, 2003).

The common practice in real time applications is to
assign priorities to tasks and to use Ceiling-Locking as
the locking policy for protected objects in order to
avoid the unbounded priority inversion. When using
Ceiling-Locking, the priority of the protected object is
known as its ceiling priority. For a correct and optimal
behavior, the ceiling priority of a protected object
should be equal to the highest value among the
priorities of all the tasks that use the resource.

React to asynchronous signal: In a real-time system, a
task should be able to react immediately to an event.
There are specific requirements that need asynchronous
signals such as recovery from the fault, changing the
mode and using interrupts.

In Ada 2005 an asynchronous SELECT-
STATEMENT provides asynchronous transfer of
control upon completion of an entry call or the
expiration of a delay (Ruiz, 2007). This statement is
shown in Fig. 10.

Triggering_statement for the execution of an
asynchronous_select can be entry_call_statement or
delay_satement. if riggering_statement is an
entry_call_statement, the entry_name and actual
parameters are evaluated as for a simple entry call and
the entry call is issued and if it is delay_satement, the
delay_expression is evaluated and the expiration time is
determined, as for a normal delay_satement.

if the abortable_part completes before
triggering_statement, the program will try to cancel the
triggering_statement and if it cancels the
asynchronous_select is complete. if the
triggering_statement is not canceled, the abortable_part
is aborted. if the triggering_statement completes
normally, the optional sequence_of_statements of the
triggering_alternative is executed after the
abortable_part is left.

NOTABLE FEATURE OF ADA

Three facts are very important to choose a

language for the real-time system. These facts are

Reliability, Safety and Expressiveness. In this part these

facts will be consider for Ada 2005.

Reliability: Ada’s design was based on Reliability.

Specific features include strong typing, checks that

prevent buffer overflow, checks that prevent dangling

reference, a concurrency feature and an exception

handling facility. Ada 2005 enhances this support in

several areas: OOP, Read-only parameters, Assertions,

Avoidance of race conditions during system

initialization, Avoidance of silent task termination

(Brosgol and Ruiz, 2007).

Safety: In a programming language it means being able

to write programs with high assurance that their

execution does not introduce hazards. This translates

into language requirements related to program

predictability and analyzability in order to allow the

system to be certified against safety standards implies

several requirements that relate to programming

language issues: Predictability and Analyzability.

Unfortunately, these requirements conflict with other

important goals such as expressiveness and

maintainability. Dynamic features and object-oriented

programming are examples of conflicts. Ada 2005

addresses these issues in several ways: Language

profiles, Ravenscar profile, Safe OOP, Safety-oriented

pragmas.

Expressiveness: applications fall across a variety of

domains and the programming language or its

associated libraries must provide the appropriate

functionality. Ada 2005 offers a number of features that

increase the language’s expressiveness. The following

are the new features:

More flexible program structuring: Ada 2005 allows

interdependent package specifications, making it easier

to model and interface with class libraries as defined in

languages such as Java.

Unification of concurrency and OOP: Ada 2005

introduces the concept of a Java-style interface that can

be implemented by either a sequential or tasking

construct, providing a level of abstraction that is not

found in other languages.

New libraries: Ada 2005 adds considerable

functionality to the predefined environment. There are

new packages, for example, for vectors and matrices,

linear algebra and 32-bit character support. A

comprehensive containers library provides facilities

somewhat analogous to the C++ Standard Template

Library.

Improved interfacing: Ada 2005 extends Ada 95’s

interfacing mechanism, making it easier to construct

Res. J. Appl. Sci. Eng. Technol., 5(14): 3803-3809, 2013

3808

programs that combine Ada code with modules from C,

C++, or Java.

ADA VERSUS OTHER PROGRAMMING

LANGUAGES IN REAL-TIME APPLICATION

In this section Ada is compared with C, C++ and

java for embedded systems. Recent enhancements in

the new Ada 2005 standard have improved Ada and let

Ada to be more manageable for embedded-system

developer's job and it can be a better development

choice than C, C++ or Java Table 1.

• Shows comparison between them

www.adacore.com.

Some of the most important properties which

considered in designing Ada are reliability and

maintainability and it is tried to improve reliability and

maintainability with features that emphasize readability

over writability and that detect errors early. Ada's

emphasis on readability and reliability does not match

with the C family of languages, including C++. Java

detects buffer overrun errors, but its weakly typed

primitive type facility allows data misuse errors that

would be caught in Ada. And unlike both Java and the

C-based languages, Ada allows programmers to specify

a constrained range for a scalar variable which aids

both readability and reliability.

The progression of programming languages has

been joined by two major development approaches:

procedural programming and object-oriented

programming. Some embedded systems can be

modeled through a procedural-programming approach;

others may best be captured through object orientation

in order to facilitate enhancements and maintenance.

Ada, like C++, can be used for both procedural and

object-oriented programming. C, by contrast, lacks

object orientation and purely procedural programming

in Java is rather clumsy.

It is also important to remind that Concurrent

programming is intrinsically more difficult than

sequential programming. Ada has a high-level

concurrency model. Many languages (such as C and

C++) do not support concurrency directly and instead

require the programmer to obtain the desired facilities

through libraries. This interferes with portability.

Others, most notably Java, have a low-level

concurrency mechanism that is error-prone.

Embedded systems often have to perform low-level

processing: dealing with storage addresses, laying out

data structures with specific fields occurring at specific

offsets, querying or specifying the size of data objects,

handling interrupts, using specialized hardware

instructions, treating data as "untyped" storage

elements. All of those capabilities are found in Ada.

Moreover and in contrast to C and C++, the Ada rules

Table 1: Comparison between Ada, C, C++ and java

 Reliability

 Ada C C++ Java

Strong typing Yes Partial Partial Partial

Range constraint Yes No No No

Index checks Yes No No Yes

Methodologies supported

Procedural Yes Yes Yes Awkward

Object orientation Yes No Yes Yes

Concurrency feature

Functionality High None None High

Software engineering High Not

applicable

Not

applicable

Low

Low-level support

Functionality High High High Low

Software engineering High Low Low Low

Subset ability support High Low Low Low

make it clear to the reader of the program that such

system-specific and perhaps potentially unsafe features

are being used. Low-level programming in Java

requires native code and a corresponding loss of

protection.

SUMMARY AND CONCLUSION

Basic characteristic of Real time system are

concurrency, Time and Clock Facilities, Facilities for

Hardware Control, Scheduling, Priority Inversion and

React to asynchronous signal and using Ada would

affects them. In some cases the effects are useful and

that’s why using Ada language is appropriate. Ada was

really capable for concurrent programs. It use calendar

package for time and clock requirements. For

controlling hardware, Ada handles interruption in two

styles: nested and non-nested. It considers several

queues for different priority levels and can use different

scheduling policies for each of them. In ada the priority

inversion problem was mostly solved. In Ada 95 it is

tried to reduce the priority inversion by implementing

the priority inheritance protocol (PIP) and in Ada 2005

tried to solve the problem with Priority Ceiling Protocol

(PCP). Ada can react to asynchronous signal well by

using Asynchronous select-statement. Notable feature

of Ada and comparison of Ada with C, C++ and java

was done in this study.

REFERENCES

Barnes, J., 2005. Rationale for Ada 2005: 4 tasking and

real-time. Ada User J., 26(3): 1-17.

Brosgol, B. and J. Ruiz, 2007. Ada Enhances

Embedded-systems Development. Retrieved from:

Embedded.com, WWW website http:// www.

embedded. com/ columns/ technical insights/

196800175?_ requested =167577 (Accessed on:

November, 2010).

Burns, A., 2009. Real-time Systems and Programming

Languages: Ada, Real-Time Java and C/Real-time

POSIX. 4 Edn., Addison-Wesley, New York.

Res. J. Appl. Sci. Eng. Technol., 5(14): 3803-3809, 2013

3809

Burns, A. and A. Wellings, 2006. Concurrent and Real-

time Programming in Ada 2005. Cambridge

University Press, Cambridge.

Bustard, W., 1990. Concepts of Concurrent

Programming. SEI-CM-24, Carnegie Mellon

University, Software Engineering Institute, April.

Jim, A.R., 1995. Priority Inheritance Protocol in Ada

95. (Research Document), University of Houston,

Clear Lake.

Lee, P.N. and W. Nehman, 1991. An overview of real-

time issues and Ada. ACM Ada Lett., 11(9): 83-95.

Potratz, E., 2003. A practical comparison between java

and Ada in implementing a real-time embedded

system. Proceedings of the Annual ACM SIGAda

International Conference on Ada (SigAda '03).

ACM Press, pp: 71-83.

Ruiz, F., 2007. Ada 2005 for Mission-critical Systems.

Retrieved from: www. adacore. com/ uploads/

technical.../Ada05_mission_critical.pdf.

Sha, L. and J.B. Goodenough, 1990. Real-time

scheduling theory and Ada. Computer, 23(4):

53-62.

Singhoff, F., 2007. MP1: Real time scheduling theory

and its use with ada. Proceedings of the ACM

International Conference on SIGAda Annual

International Conference (SIGAda '07), pp: 8-8.

Wellings, A.J. and A. Burns, 2007. A framework for

real-time utilities for Ada 2005. Proceedings of the

13th International Workshop on Real-time Ada

(IRTAW '07), pp: 41-47.

