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Abstract: Many human activities are electricity-dependent. As major providers of electricity, the performance of 
high-power stations represents a vital part of any national economy. In the present study, we identified the 
distribution fitting to TBF. The distribution fitting based on failure data collection, calculated TBF, plotted the 
histogram for TBF and matched the plot on the continuous distributions' functions have been investigated. Then, the 
most valid distribution was found to be the Three-parameter Weibull distribution. Shape, scale and location 
parameters values were 0.75169, 32.125 and 1.9375, respectively. 
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INTRODUCTION 

 
Reliability and High Power model are a necessary 

aspect for the prediction capacity to make sure that 
source sufficient electricity when required. High power 
systems are very difficult and it had major elements for 
preparation. Reliability is a primary part of product 
perception. Reliability is one of the most effective 
product qualities for buyers in making their choices 
among different varieties (Anbalagan and 
Ramachandran, 2011) Reliability usually becomes more 
important to consumers as failure, repair and 
maintenance items become more costly (Anbalagan and 
Ramachandran, 2011). Factory of ice cubes, for 
example, are especially sensitive to downtime (power 
cuts) during the short summer season. In 1986, the 
International Organization for Standardization (ISO) 
defines reliability as “the ability of an item to perform a 
required function, under given environmental and 
operating conditions and for a stated period of time” 
(ISO, 1986). Lisnianski and Jeager, they consider the 
time-redundant system where the system whole task is a 
sequence of n phases and the total task must be 
executed during a constrained time. There is a server 
for every phase, which completes the phase mission 
during the randomly distributed time. The server is 
unreliable completely and there are two types of failure 
are feasible ("open" and "closed"). They presented the 
adequate model by using a semi-Markov process as a 
mathematical technique and they derived the closed-
form solution based on an acyclic Semi-Markov 
process (Lisnianski and Jeager, 2000). In 2004, Elmira, 
studies the structure of Bayesian group replacement 
policies for a parallel system of n items with 

exponential failure times and random failure parameter. 
In his study, he proofed the fact that it is optimal to 
observe the system only at failure times for the case of 
two items operating in parallel issue (Elmira, 2004). 
The system subject to external and internal failures was 
considered by Montoro-Cazorla and Pérez-Ocón, when 
the occurring failures following a Markovian Arrival 
Process (MAP) and the operational time has Phase-type 
distribution (PH distribution) (Montoro-Cazorla and 
Pérez-Ocón, 2006). Castro and Sanjuán presented a 
combined maintenance strategy in which the repair of 
the system failures is performed only in an interval of 
time of the operating period. The aim of the work is to 
exhibit the optimal interval in which the repairs can be 
performed (Castro and Sanjuán, 2008). 

 
BASIC CONCEPTS AND FAILURE  

FUNCTIONS 
 

There are many factors and definitions related to 
reliability. The most important of these are the 
following:  
 
Failure: It is defined as the inability of the system 
(subsystem or one of its components) to perform its job 
(Frankel, 1988), or the "inability of the item to meet the 
requirements of the work" (Carter, 1997). 
 
Availability: Most researchers define availability as the 
probability that an item will be available (Carter, 1986) 
or the probability that the system will operate 
satisfactorily at any point in time when operating under 
a specified condition (Martz and Waller, 1982).  
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Maintainability: It is the design quality of the system 
which helps the performance of various maintenance 
activities, in particular, inspection, repair, replacement 
and diagnosis. Maintainability is an important 
characteristic of life-cycle design and plays a 
significant role during the service period of the product 
(Wani and Gandhi, 1999). 
 
Mean time between failures: MTBF is a parameter of 
basic reliability for the repairable components. It is the 
ratio of the total number of life unit for components to 
the total number of failures (Ying et al., 2011). 
 
Mean time to failures: The expected value represents 
the return period of failures for equipment, when T is 
the time to failure is often called Mean-Time-to-Failure 
(MTTF) (Zio, 2006). It can be expressed 
mathematically as follows (Hamada et al., 2008): 
 
ܨܶܶܯ  ൌ ሻݐሺܧ ൌ ׬ ∞ݐሻ݀ݐሺ݂ݐ

ି∞  
 
where,  
E (T) = The expected value of T 
MTTF = Called the expected life 
 

There are many ways to define reliability. For 
example, in an electrical switch, the reliability may be 
defined as the probability that it successfully functions 
under a stipulated load and at a specific temperature. 
The reliability an operational definition of reliability 
must be precise sufficiently to allow a clear distinction 
between items, which are reliable and those that are not, 
but also must be sufficiently general to account for the 
complexities that arise in making this determination 
(Hamada et al., 2008). 

From this definition of reliability, we see that 
reliability analyses often involve the analysis of binary 
outcomes (0, 1) (i.e., success = 1/failure data = 0) 
(Hamada et al., 2008). 

Let T a continuous random variable, taking values 
on the real line. There are many ways to specify the 
properties of a random variable (Hamada et al., 2008). 
The first way it's the probability density function is a 
function (P.d.f.), f (t) that satisfies: 

 
 ݂ሺݐሻ ൒ 0    െ ∞ ൏ ݐ ൏ ∞ 
 
and 
 

න fሺtሻ dt ൌ 1
∞

ି∞
 

 
When T is Weibull random variable with three 

parameters, denote (3P), the probability density 
function for T is: 

 
          (1) 

where,  

θ : The location  
λ : The scale  
β : The shape of the distribution 

 
A second way to specify the properties of a random 

variable is through its reliability function, also known 
as the survival function (Hamada et al., 2008). We 
define the reliability function as: 
 

Rሺtሻ ൌ pሺT ൐ ሻݐ ൌ න fሺsሻ ds
∞

୲
 

 
 where, f (t) is a probability density function. 

The reliability function for the Weibull distribution 
(3P) random variable is: 

 

Rሺtሻ ൌ pሺT ൐ ሻݐ ൌ  න  ds
∞

୲
 

 
= expൣെߣሺݐ െ  ሻఉ൧                (2)ߠ

   
Another way to specify the properties of T is the 

cumulative distribution function. Mathematically: 
 

Fሺtሻ ൌ PሺT ൑ tሻ ൌ න fሺsሻ ds
୲

ି∞
 

 
The cumulative distribution function is the 

complement of the reliability function, so it is also 
called the unreliability function (Hamada et al., 2008). 

The cumulative distribution function for the 
Weibull distribution (3P) random variable is: 
 

Fሺtሻ ൌ PሺT ൑ tሻ ൌ න ds
୲

଴
 

 

ൌ 1 െ                                    (3) 
 
where, f (t) is a probability density function for a 
Weibull distribution (3P) random variable. The forth 
way to specify the properties of a random variable is the 
hazard function, also called the instantaneous failure 
rate function (Hamada et al., 2008): 
 

hሺtሻ ൌ
fሺtሻ
Rሺtሻ 

 
For more detailed treatment, see (Hamada et al., 

2008). The cumulative hazard rate is also referred to as 
hazard function. 
Mathematically (Zhao and Qin, 2007): 
 

Fሺtሻതതതതത ൌ exp ሾെHሺtሻሿ  
 
So 
 

Hሺtሻ ൌ െ logሾRሺtሻሿ 

( ) ( ) ( )1; , , exp ,  0 ,    

0,  0,

f t t t tβ βλ β θ λβ θ λ θ θ

β λ

− ⎡ ⎤= − − − ≤ <⎣ ⎦
> >

( ) ( )1 exps sβ βλβ θ λ θ− ⎡ ⎤− − −⎣ ⎦

( ) ( )1 exps sβ βλβ θ λ θ− ⎡ ⎤− − −⎣ ⎦

( )exp t βλ θ⎡ ⎤− −⎣ ⎦
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where, h(t) is a hazard function. The hazard function 
and cumulative hazard function for the Weibull 
distribution (3P) random variable are: 
 

hሺtሻ ൌ
 

ൌ  (4) 

 

Hሺtሻ ൌ െ logሾexp ሺെλ ሺt െ θሻβሻሿ ൌ        (5) 
 

The functions f(t), F(t), R(t) and h(t) are called 
”failure functions." 
 
Problem statement: The present study describes a case 
study of step down station transformers that transform 
electricity from 33000 to 11000 KV. The data were 
collated from the principal records of the maintenance 
department stations. The main problem faced was that 
the failure data were record manually. To deal with this, 
we wrote the dates of breakdowns for these stations and 
calculated them together with the TBF for the period 
under a case study. For example, the first breakdown 
was on 15th Jan and the second breakdown was on 24th 
Apr; the operation time TBF was equal to 91 days. The 
period was for five years. 

We studied and analyzed the TBF from an 
electricity distribution company in Baghdad, Iraq. 
Where we visited the  maintenance department  and met  

with the engineers and technicians. These meetings 
allowed us to study the reliability of these stations and 
find the optimal method to maintain them. This list was 
also needed for further study and analysis, in light of 
the difficult conditions and scarcity of electric power in 
Iraq. Furthermore, the meetings took place for several 
days, accompanied by the codification of technical 
notes and the experiences of workers repairing these 
stations to aid our study of these phenomena. 

The power stations under a case study included 
Three Transformers. Each one of these transformers 
had a circuit breaker with limited capacities (1200 A) 
that acted as the main circuit breaker for the 
transformers. Connected between the conduction pieces 
are the Bas-Bar, which are linked with a group of 
feeders to each of the transformers. The first, second 
and third transformers are separated by circuit breakers 
with limited capacities of 800 A, called the Bas-Section 
circuit breaker. Each feeder has a circuit breaker with a 
capacity of 400 A. The main circuit breaker should be 
switched ON and the Bas-Section circuit breaker should 
be switched OFF, if the transformers are operating. 
However, if one of these transformers stops due to any 
failure, the circuit breakers for these transformers 
should have to be switched OFF and the Bas-Section 
circuit breaker is switched ON to provide electricity to 
the broken transformer feeders. Through study and 
analysis, we created a representation of the station as 
described in the records of the chamber for scientific 
verification and analysis as shown in Fig. 1. 

 

 
 
Fig. 1: The geometric sketch of the high power station 33/11 KV 

( ) ( )1 expt tβ βλβ θ λ θ− ⎡ ⎤− − −⎣ ⎦

( )exp t βλ θ⎡ ⎤− −⎣ ⎦

( ) 1t βλβ θ −−

( )t βλ θ−
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RESEARCH METHODOLOGY 
 

In the current study, the main focus is on the 
performance of a station component that fails randomly, 
i.e., the TBF is a random variable. In this case, a 
statistical function to identify a statistical distribution to 
TBF was studied. A goodness of fit for this statistical 
distribution was tested, including the use of the 
Kolmogorov-Smirnov and erson-Darling and Chi-
square test. We also used the distribution fitting 
software "EasyFit" to display the goodness of fit 
reports, including the test statistics and critical values 
calculated for various significance levels (α = 0.2, 0.1, 
0.05, 0.02, 0.01). The histogram was based on sample 
data. To define the number of vertical bars based on the 
total  number  of  observations,  we used the equation, 
Q = 1 + log2N, where N is the total number of TBF and 
Q is the resulting number of classes. The height of each 
histogram bar indicates how many of the data points 
fall into that class. Distribution graphs are used to 
support the result of goodness of fit. There are several 
common distribution graph types that can be applied. 
The current study used five useful graph types: 
Probability Density Function (PDF) Graph, Cumulative 
Distribution Function (CDF) Graph, Probability-
Probability (P-P) plot, Quantile-Quantile (Q-Q) plot 
and Probability Difference Graph (Dif). 

The (PDF) Graph displays the theoretical 
probability density function of the fitted distribution, 
i.e., for continuous distributions. The PDF is formulated 
in terms of an integral between two points:  

 

Pሼa ൑ X ൑ bሽ ൌ න fሺxሻdx
ୠ

ୟ
 

 
The (CDF) Graph displays the theoretical 

Cumulative Distribution Function of the fitted 
distributions and the empirical CDF based on the 
sample data. Furthermore, the PDF graph mainly shows 
the shape of the data. The CDF graph is useful in 
showing how well the distributions fit to data. The (P-
P) plot is a graph of the experimental CDF values 
plotted against the theoretical (fitted) CDF values. It is 
used to determine how well the specific distribution fits 
the recorder data. The P-P plot will be roughly linear if 
the specified theoretical distribution is the correct 
model. The graph of the quantiles (inverse CDF values) 
of the fitted distribution against input data values 
plotted is a Quantile-Quantile plot. The analysis of the 
Q-Q plot is similar to that of the P-P plot: if the 
distribution you are testing is the correct model, the 
graph points will lie on a nearly upright line. The Dif 
graph is a scheme of the difference between the 
experimental cumulative distribution's function and the 
fitted CDF. The probability difference graph is nearer 
to the classical goodness of fit tests. Furthermore, the 
Kolmogorov-Smirnov test  is  based  on  measuring  the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Probability density function of TBF for the station 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Cumulative distribution function of TBF for the station 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Probability-probability plot for the distributions under 

analysis 
 
difference of probabilities. The best fit is the less 
absolute value of this difference: if the maximum 
absolute difference is less than 0.05 (or 5%), the fit can 
be considered good. For very good fits, this value will 
be less than 1%. 
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Fig. 5: Quantile-quantile plot for the distributions under 

analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Probability difference graph for the distributions under 

analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: PDF for the weibull distribution (3P) and TBF for the 

station 
 
Data collection and analysis: Data for TBF were 
collected from an electricity distribution company in 
Baghdad, Iraq. The sample included ten stations and the 
study period was for 5 years. After analysis and testing 
the data under many distributions using EasyFit 
software, we found through the optimal analysis of the 
data that  they  follow  the  Weibull  distribution  (3P) 
(β  =  0.75169,   λ  =  32.125,   θ =  1.9375).   The   idea  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8: CDF for the weibull distributions and TBF for the 

station 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9: Probability-probability plot for the weibull 

distributions (3P) and TBF for the station 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10: Quantile-quantile plot for the weibull distributions 

(3P) and TBF for the station 
 
underlying the goodness of fit tests is to measure the 
"distance" between the data and the distribution being 
tested and then comparing that distance to some 
threshold value. The goodness of fit reports that involve 
the test statistics and critical values calculated for 
diverse significance levels are as follows: α = 0.2, 0.1, 
0.05, 0.02 and 0.01. Furthermore, if the threshold value 
(the critical value) is more than the distance (called the 
test statistic), the fit is good. Since the goodness of fit 
test  statistics  indicates  the  distance  between  the data  
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Fig. 11: Probability difference graph for the weibull 

distribution (3P) and TBF for the station 

and the provided distributions, it is obvious that the 
distribution with the lowest statistic value is the best-
fitting model. Based on this fact, each distribution is 
ranked (1 = the very best model, 2 = the next-best 
model and so on) as regards the highest p-value of the 
Kolmogorov-Smirnov test. These outcomes help us 
easily compare the fitted models and select the most 
valid one. The results of the analysis for much closer 
distributions are shown in Fig. 2 to 6. 

The results of the good fitting for Weibull 
distribution (3P) are shown in Fig. 7 to 11. The results 
for goodness of fit for the distributions under analysis 
are shown in Tables 1, 2 and the results for goodness of 
fit for the Weibull distribution (3P) is shown in Table 3.

 
Table 1: The summary of goodness of fit sorted by distribution name 

 

Distribution 

Kolmogorov smirnov 
--------------------------------------------- 

Anderson darling 
------------------------------------------- 

Chi-squared 
---------------------------------

Statistic Rank  Statistic  Rank  Statistic  Rank
1 Exponential  0.13876  5  1.11380   4  3.6981  4 
2 Exponential (2P)  0.16380  6  2.89140   5   6.7906  5 
3 Gamma  0.11403  4  0.69961   2    1.6978  1 
4 Gamma (3P)  0.10311  3  4.29110   6  N/A 
5 Weibull  0.09910  2  0.67700   1  2.2951  3 
6 Weibull (3P)  0.08736  1  0.73276   3  2.0981  2 
 
Table 2: The summary of goodness of fit sorted by rank resulting from the Kolmogorov-Smirnov test 

 

 Distribution 

 Kolmogorov smirnov 
--------------------------------------------- 

 Anderson darling 
------------------------------------------- 

 Chi-squared 
---------------------------------

 Statistic Rank  Statistic  Rank  Statistic  Rank
 6  Weibull (3P)  0.08736  1  0.73276  3  2.0981  2 
 5  Weibull  0.09910  2  0.67700  1  2.2951  3 
 4  Gamma (3P)  0.10311  3  4.29110  6  N/A 
 3  Gamma  0.11403  4  0.69961  2  1.6978  1 
 1  Exponential  0.13876  5  1.11380  4  3.6981  4 
 2  Exponential (2P)  0.16380  6  2.89140  5  6.7906  5 
 
Table 3: The details for goodness of fit for weibull distribution (3P) 
Kolmogorov-Smirnov 
Sample size 45 
Statistic 0.08736 
p-value 0.85263 
Rank 1 
α 0.2 0.1 0.05 0.02 0.01 
Critical value 0.15623 0.17856 0.19837 0.22181 0.23798 
Reject? No No No No No 
Anderson-darling 
Sample size 
Statistic 
Rank 

45 
0.73276 
3 

α 0.2 0.1 0.05 0.02 0.01 
Critical value 1.3749 1.9286 2.5018 3.2892 3.9074 
Reject? No No No No No 
Chi-squared 
Deg. of freedom 
Statistic 
p-value 
Rank 

3 
2.0981 
0.55231 
2 

α 0.2 0.1 0.05 0.02 0.01 
Critical value 4.6416 6.2514 7.8147 9.8374 11.345 
Reject? No No No No No 
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CONCLUSION 
 

In this study, the TBF has been analyzed in order to 
find the fitting distribution. In this analysis, we 
calculated the number of failures based on original 
failure data from the station of the company being 
studied. After running the software and recording the 
optimal distribution, we found that the Weibull 
distribution (3P) could be the best distribution among 
the others. However, it seems the data could still not 
lead to accurate results since quantitative tests (Chi-
squared and Kolmogorov-Smirnov tests) have yet to be 
rejected in each distribution except Gamma (3P) and 
Exponential (2P) distributions (for more information 
see Appendix A). Looking at the qualitative tests (such 
as Quintile-Quintile plot, Fig. 5) it seems that Weibull 
distribution (3P) for whole TBF is more acceptable; 
therefore, we decided to focus on the top ranked 
element in the goodness of fit summary. The value of 
test statistic for Weibull distribution (3P) is 0.08736 
and the critical values are 0.15623, 0.17856, 0.19837, 
0.22181 and 0.23798, with significance levels α = 0.2, 
0.1, 0.05, 0.02 and 0.01, respectively. It is apparent  that 

the statistic value is less than all critical values, which 
means that TBF is distributed Weibull with three 
parameters: shape parameter β = 0.75169, scale 
parameter   λ   =   32.125   and   location    parameter   
θ = 1.9375. The Weibull distribution model, in addition 
to illustrating a previously unknown fault, can also be 
used to implement the easy matching of behavior from 
the data to a particular distribution. This can be applied 
by analyzing the shape parameter value (β) from the 
Weibull distribution, as shown in the figures listed 
in Appendix B. If the value of the shape parameter is 
small, it means that the station in the first stage may 
lead to a failure. Applying the proposed method makes 
it easier to reach the same result so as to extract 
reliability; this method derived from analyzing the 
Weibull distribution is called Weibayes. 

Our future research will aim to find the reliability 
value for each part of the station. We will also calculate 
the total reliability of the station regardless of whether 
the station has sequential, parallel or mixed system. We 
will then develop a mathematical maintenance model 
for the station.  

 
Appendix A: The results of goodness of fit (Kolmogorov-Smirnov, Anderson-Darling and Chi-square tests) sorted by rank of Kolmogorov-

Smirnov 
Table A.1: The values of two-parameter weibull distribution for goodness of fit   
Weibull [#5] 
Kolmogorov-Smirnov 
Sample size 
Statistic 
p-value 
Rank 

45 
0.0991 
0.73153 
2 

α 0.2 0.1 0.05 0.02 0.01
Critical value 0.15623 0.17856 0.19837 0.22181 0.23798
Reject? No No No No No
Anderson-Darling 
Sample size 
Statistic 
Rank 

45 
0.677 
1 

α 0.2 0.1 0.05 0.02 0.01
Critical value 1.3749 1.9286 2.5018 3.2892 3.9074
Reject? No No No No No
Chi-squared 
Deg. of freedom 
Statistic 
p-value 
Rank 

4 
2.2951 
0.68167 
3 

α 0.2 0.1 0.05 0.02 0.01
Critical value 5.9886 7.7794 9.4877 11.668 13.277
Reject? No No No No No
 
Table A.2: The details for goodness of fit for gamma distribution (3P)  
Gamma (3P) [#4]  
Kolmogorov-Smirnov 
Sample size 
Statistic 
p-value 
Rank 

45 
0.10311 
0.68653 
3 

α 0.2 0.1 0.05 0.02 0.01
Critical value 0.15623 0.17856 0.19837 0.22181 0.23798
Reject? No No No No No
Anderson-Darling 
Sample size 
Statistic 
Rank 

45 
4.2911 
6 

 

α 0.2 0.1 0.05 0.02 0.01
Critical value 1.3749 1.9286 2.5018 3.2892 3.9074
Reject? Yes Yes Yes Yes Yes
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Table A.3: The details for goodness of fit for two-parameter gamma distribution 
Gamma [#3] 
Kolmogorov-Smirnov 
Sample size 
Statistic 
p-value 
Rank 

45 
0.11403 
0.56316 
4 

    

α 0.2 0.1 0.05 0.02 0.01 
Critical value 0.15623 0.17856 0.19837 0.22181 0.23798 
Reject? No No No No No 
Anderson-Darlin 
Sample size 
Statistic 
Rank 

45 
0.69961 
2 

    

α 0.2 0.1 0.05 0.02 0.01 
Critical value 1.3749 1.9286 2.5018 3.2892 3.9074 
Reject? No No No No No 
χ2 
Deg. of freedom 
Statistic 
p-value 
Rank 

5 
1.6978 
0.88918 
1 

    

α 0.2 0.1 0.05 0.02 0.01 
Critical value 7.2893 9.2364 11.07 13.388 15.086 
Reject? No No No No No 
 
Table A.4: The details for goodness of fit for one-parameter exponential distribution 
Exponential [#1] 
Kolmogorov-Smirnov 
Sample size 
Statistic 
p-value 
Rank 

45 
0.13876 
0.32136 
5 

    

α 0.2 0.1 0.05 0.02 0.01 
Critical value 0.15623 0.17856 0.19837 0.22181 0.23798 
Reject? No No No No No 
Anderson-Darling 
Sample size 
Statistic 
Rank 

45 
1.1138 
4 

    

α 0.2 0.1 0.05 0.02 0.01 
Critical value 1.3749 1.9286 2.5018 3.2892 3.9074 
Reject? No No No No No 
χ2 
Deg. of freedom 
Statistic 
p-value 
Rank 

4 
3.6981 
0.44841 
4 

    

α 0.2 0.1 0.05 0.02 0.01 
Critical value 5.9886 7.7794 9.4877 11.668 13.277 
Reject? No No No No No 
 
Table A.5: The details for goodness of fit for two-parameter exponential distribution 
Exponential (2P) [#2]      
Kolmogorov-Smirnov      
Sample size 
Statistic 
p-value 
Rank 

45 
0.1638 
0.15973 
6 

    

α 0.2 0.1 0.05 0.02 0.01 
Critical value 0.15623 0.17856 0.19837 0.22181 0.23798 
Reject? Yes No No No No 
Anderson-Darling      
Sample size 
Statistic 
Rank 

45 
2.8914 
5 

    

α 0.2 0.1 0.05 0.02 0.01 
Critical value 1.3749 1.9286 2.5018 3.2892 3.9074 
Reject? Yes Yes Yes No No 
χ2      
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Table A.5: (Continue) 
Exponential (2P) [#2]      
Deg. of freedom 
Statistic 
p-value 
Rank 

4 
6.7906 
0.14738 
5 

    

α 0.2 0.1 0.05 0.02 0.01 
Critical value 5.9886 7.7794 9.4877 11.668 13.277 
Reject? Yes No No No No 
 
Appendix B: The effects of changing the value of a shape parameter (α) in the mode of failure rate function 
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Fig. B.1: Illustration the effect on failure rate function when changing the value of a shape parameter (β) 
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