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Abstract: In this study, the friction model in non-Newtonian drilling fluid is developed to evaluate the signal 
attenuation in the information transmission with the continuous wave. A model of transient non-Newtonian power-
law pipe flow is developed by assuming a steady viscosity varied only with the radius and the solution is derived 
analytically in complex domain and time domain. The frequency-dependent friction is developed based on the 
solution in the time domain and is used in the pressure wave transmission. And the analysis results show that the 
highest pressure amplification with resonant frequency increases with the power-law index n increase and the 
resonant frequency increases with the n decrease. 
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INTRODUCTION 

 
Mud pulse telemetry has been the global standard 

for real time data transmission in the Measurement 
While Drilling/Logging While Drilling (MWD/LWD) 
technology for the past thirty years (Klotz et al., 
2008a). The data rate of the mud pulse telemetry had 
reached to 6bits per second (bps) in the 1990s (Martin 
et al., 1994), then this technology reached mature and 
now the data rate is up  to  20  bps  (Klotz  et al.,  
2008a, b). The practical limit of 50 bps with a 35 Hz 
bandwidth fairly clear of noise is estimated by 
Montaron et al. (1993). However, the theoretical 
analysis of data rate limit for the mud pulse telemetry 
has not been found in the relevant literature. For the 
same bandwidth, with the new measurement technique, 
signal generator type and data compression technique 
(Bernasconi et al., 1999), the maximum data rate can be 
improved. Therefore, the analysis of the maximum limit 
for the data rate makes no sense and the analysis of 
bandwidth limit is theoretical analysis in this study. 

In the earlier studies about the pressure pulse 
transmission, the signal attenuation is based on the 
friction coefficient of the Newtonian fluid (Chen and 
Aumann, 1985; Desbrandes et al., 1987; Kytomaa and 
Crosso, 1994). Wang et al. (2009) developed a 
frequency-dependent friction model for the non-
Newtonian drilling fluid, in this model; the shear rate of 
the Newtonian fluid was used in the constitutive 
equation of non-Newtonian fluid to calculate the 
frequency-dependent friction. 

The attenuation models of the pressure wave cited 
above have been limited to the Newtonian fluid which 

cannot fully reflect the transmission characteristics of a 
pressure wave transmitted in the non-Newtonian fluid 
flowing. In this study, the frequency-dependent 
attenuation model for the non-Newtonian power-law 
fluid is developed based on the approach developed by 
Zielke (1968) for Newtonian laminar flows. 

 
MATHEMATICAL MODEL 

 
Governing equation: In order to simplify the problem, 
the geometry is defined as a long horizontal pipeline in 
which the axial coordinate is x and radial coordinate is 
r. By assuming the fluid motion of the power-law fluid 
inside the drill string as incompressible and laminar, the 
motion equation for the unsteady-state flow can be 
written as: 
 

                                           (1) 

 
where, u is the axial velocity, ρ, the drilling fluid 
density, p, the pressure, τ, the shear stress, t , the time, 
x, the axial coordinate, r, the radial coordinate. 

The rheological equation used to represent power-
law fluids in cylindrical coordinates can be written as: 
 

                                          (2) 
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µa  =  The apparent viscosity which can be expressed  
          as 

                                           (3) 

 
Substituting the Eq. (2) into the Eq. (1), we can get 

a nonlinear partial differential equation which is 
difficult to be solved analytically. Before the pressure 
wave traverses the drilling fluid in the drill string, the 
flow of the drilling fluid has been steady and the 
pressure wave will disturb the steady flow of the 
drilling fluid. In fact, for the information transmission, 
the amplitude of the pressure wave is small, so that the 
velocity disturbance and shear rates caused by the 
pressure wave are smaller than that of the steady-state 
flow. Therefore, in this study the shear rate in steady 

power-law flow is used in the apparent viscosity . 

Substituting Eq. (2) into the Eq. (1), the motion 
equation is written as: 
 

                      (4) 

 

where, the  is similar to the dynamic viscosity of the 

Newtonian fluids and is defined by: 
 

                             (5) 

 
In which, f  is the pressure gradient of the steady flow. 
 
Boundary conditions: The following equations 
represent the boundary conditions for all time which 
must be applied to solving the governing equation: 
 

                                            (6) 

 

                             (7) 

 
Solution: Equation (4) can be converted into ordinary 
differential equations by means of the Laplace 
transform and can then be integrated subject to 
appropriate boundary conditions. The Laplace 
transform of Eq. (4) can be expressed as: 
 

       (8) 

 

where, ( ) ( ),P s x
F s

x

∂
=

∂
 is the Laplace transform of

 
( ),p t x

x

∂

∂
, U(s, r) is the Laplace transform of u  and  is 

the Laplace transform variable. 
The general solution to the Eq. (8) can be written as: 
 

    (9) 

where, C1  and C2 are constants of integration to be 

determined from the boundary conditions, Iσ and Kσ are 

modified Bessel functions of first and second kinds and 

σ order and  

 

,   

 

                                            (10) 

 

With the boundary conditions in Eq. (6) and (7), 

the constants of integration in Eq.(9) are: 

 

                  (11) 

 

And finally, the Eq. (9) is transformed as: 

 

                               (12) 

 

In which: 

 

                                        (13) 

 

FREQUENCY-DEPENDENT FRICTION 
 

Pressure wave transmitted inside the drill string: In 

the continuous wave information transmission, the 

pressure wave inside the drill string can be seen as the 

periodic flow in the steady pipe flow and only the 

periodic flow plays the leading role. The amplitude of 

velocity oscillation for the periodic flow is smaller than 

the velocity in the steady pipe flow, therefore, in the 

periodic flow, a viscosity varied with radius but not 

varied with time is used. 

The time domain solution for the periodic flow is 

obtained using the inverse Laplace transform of the Eq. 

(12) by partial fraction expansion method. the pressure 

gradient varies sinusoidally with time: 

 

                     (14) 

 

For the periodic flow, only the real part of the 

solution gives the physical value and for a long time 

steady oscillation, the transient term of the solution can 

be neglected. Therefore, for the long time steady 

periodic flow of non-Newtonian fluid, the result can be 

simplified as:  
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                 (15) 

 
where, Pp is the amplitude of the sinusoidal pressure 
gradient, ω is the angular frequency. t is time, j is 

Bessel function of first kind and 
1

2

n
h

n

+
= , 0av

µ
ρ

= . The 

h is a parameter relating to the power-law index n, the 
larger the  deviates from 1, the more obvious the non-

Newtonian characteristic will be. 
 
Frequency-dependent friction: Base on the Eq. (15), 
the mean velocity and the wall shear stress are 
 

            (16) 
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as a modified quotient of Bessel functions of 1−σ order. 

The frequency of τw is physically same as the ��(t), 

however, the frequency of the real part of Eq. (17) is  

times of the frequency of ��(t). If the real part in the 

bracket is only used, for some values of , such as n = 

2, the τw is non-negative, which are contrary to the fact. 
Therefore, the steady viscosity is used here and 
according to the Eq. (2),τw  can be derived as: 
 

                       (18) 

 

                          (19) 

 

             (20) 

 
Equation (18) is the frequency-dependent friction 

of the non-Newtonian power-law pipe flow, which 
varied with time, frequency, power-law index, pipe 
radius, consistency coefficient and acceleration of the 
fluid.  

FREQUENCY-DEPENDENT FRICTION USED IN 

THE PRESSURE WAVE ATTENUATION 
 

The equations of the pressure wave propagation are 
used in a simplified form by neglecting the nonlinear 
terms and then the motion equation and continuity 
equation become: 
 

       (21) 

 

                                                  (22) 

 

where, Q is the flow rate,  is the wave speed in the 

drilling fluid, its calculation can be found in the study 

by Liu et al. (1999).  

Substituting Eq. (18) into Eq. (21), the motion 

equation becomes: 

 

                             (23) 

 

Let:  

 

           (24) 

 

The propagation constant  becomes: 

 

                                                  (25) 

 

where, Rf, Lf, Cf 
are fluid resistance, fluid capacitance 

and fluid inductance respectively they are equivalent to 

the ones used in the analysis of electric transmission 

lines. 

The characteristic impendence is: 

 

                                                 (26) 

 

Zc Is the function of the physical properties of the 

pipe radius, oscillation frequency and consistency 

coefficient and power-law index. 

As shown in Fig. 1, if the values for the p and Q at 

one cross section x1, the values at another cross section 

x2 can be calculated using the following transfer 

functions: 

 

            (27) 

 

where, l is the distance between cross section x1 and x2. 
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Fig. 1: Cylindrical pipe with flow rate and pressure at two 

ends 

 

 
 
Fig. 2: Ratio of the pressure amplitude between upstream and 

downstream versus frequency for different n 

 
For the pressure wave transmission, the flow rate 

of the system in the upstream and the pressure 
amplitude generated by the mud pulser in the 
downstream are known and the pressure amplitude at 
the standpipe in the upstream is that we are interesting, 
which can be written as: 
 

             (28) 

 
The Eq. (28) is derived by assuming the drilling 

fluid channel is a long horizontal pipeline without 
sudden expansions, contractions, interfaces and other 
fluid component. In this study, we just want to get the 
influence of non-Newtonian fluid on the attenuation 
and frequency characteristic of the drilling fluid 
channel. 

Figure 2 shows the numerical results obtained from 
Eq. (28) with the frequency dependent terms for Lf  and 
Rf. It can be seen that the highest pressure amplification 
with resonant frequency increases with the power-law 
index n increase and the resonant frequency increases 
with the n decrease.  

 

CONCLUSION 
 

• A model of transient non-Newtonian power-law 
pipe flow has been developed by assuming a steady 
viscosity only varied with the radius and the 
solution is derived analytically in complex domain 

• A model of the frequency-dependent friction has 

been developed based on the solution of the 

transient non-Newtonian power-law pipe flow in 

the time domain, which is in good agreement with 

the Newtonian results arrived by earlier studies for 

n = 1 

• The frequency-dependent friction has been used in 
the pressure wave transmission. And the results 
show that the highest pressure amplification with 
resonant frequency increases with the power-law 
index n increase and the resonant frequency 
increases with the n decrease. 
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