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Research Article 
Performance Analysis of the Different Null Steering Techniques in the Field of  

Adaptive Beamforming 
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Abstract: In this study, we compare the performance of three null steering techniques using uniform linear array. 
These techniques include Null Steering without using Phase Shifters, Null Steering by Decoupling the Real Weights 
and Null Steering by Decoupling the Complex Weights. The evaluation criteria of these techniques is based on the 
bases of different parameters i.e., null depth, main beam width, side lobe levels, number of steerable nulls, 
computational complexity and number of sensors used in the array. The validity and effectiveness of these 
techniques is reflected by the resultant radiation pattern of the array. 
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INTRODUCTION 

 
Null steering is a compulsory and important part in 

adaptive beam forming and it has vast applications in 
radars, sonar, mobile communications, etc., (Vu, 1984; 
Ibrahim, 1991; Khan et al., 2011, Zaman et al., 2012a, 
b and c). In literature, different methods have been 
developed for null steering. These methods can be 
categorized in two classes. The 1

st
 class relies on 

physical perturbation of the sensors in the array which 
requires servo motors along with other hardware to 
achieve the results (Hejres, 2004). Due to physical 
perturbation, it has not been considered an efficient 
approach. The 2

nd
 class of algorithms presents methods 

in which digital attenuators and phase shifters are 
required to change the weights of an array. In this class 
two methods are famous to update the coefficients of 
the array factor. The 1

st
 type of methods updates the 

weights using phase shift of the current (Steyskal, 
1983) but the problem is its complexity and hardware 
constraints. The 2

nd
 type of methods updates the 

weights using only the current amplitudes to steer nulls 
(Vu, 1984). 

Null steering in linear adaptive arrays using current 
amplitudes is the best line of approach to meet the 
requirements of the field. It reduces computational time 
by getting symmetrical distribution of the amplitude of 
the currents about centre of the array. This is an 
efficient way, but unfortunately it reduces number of 
steerable nulls i.e., half to the total number of elements 
in the array. Furthermore, this method is also unable to 
steer nulls independently. In Ibrahim (1991), the 
concept of independent null steering is introduced. It 

achieves this by decoupling the real weights of the 
array. But, unfortunately, this technique could not 
increase the number of controllable nulls of the array. 
Finally, the technique presented in Khan et al. (2011), 
takes over the issue and control has been obtained on all 
possible nulls of the linear array. Moreover, nulls are 
steered independently. In other words, the method can 
steer (N-1) nulls in arbitrary directions using array of N 
elements with extra feature of independent nulling. 
Method is structure based and it needs (N-1) sets of 
complex digital attenuators, in an array of N elements. 

In this study, the performance of Independent Null 

Steering by Decoupling the Complex Weights is 

evaluated further with different parameters and 

environments. Two other methods, Null Steering 

without using Phase Shifters and Independent Null 

Steering by Decoupling the Real Weights are also 

discussed with different constraints. Moreover, the 

performance of Independent Null Steering by 

Decoupling the Complex Weights is compared with the 

other two null steering techniques. The evaluation 

criteria of these techniques is based on the bases of 

different parameters i.e., null depth, main beam width, 

side lobe levels, number of steerable nulls, 

computational complexity, different number of sensors 

in the array and hardware cost. The two techniques, 

Independent Null Steering by Decoupling the Complex 

Weights and Independent Null Steering by Decoupling 

the Real Weights, are structure based so these required 

more hardware cost. Lastly, the validity and 

effectiveness of these techniques is reflected by the 

resultant radiation pattern of the array. 
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PROBLEM FORMULATION 

 

Array of N elements is considered with equal 

spacing d. All elements are placed in a straight line with 

first element considered as reference point. For far field 

observation, angle of arrival is considered θ. A simple 

case is considered here, where current amplitudes of all 

elements in the linear array are uniform and α is taken 

as progressive phase (Applebaum, 1976). The array 

factor is given as:  

 

�� = ∑ ��(�	
)�

��
                 (1) 

 

where, 

 

� = ������ + � 

 

� = 2�
��  

 

Array factor in expanded form is: 

 

�� = 1 + ��� + ���� +  … … … + ��(
	
)�       (2) 

 

After considering,  = exp ($�), AF can be 

expressed in the following way: 

 

�� = 1 +  +  � +  % +  … … … +  
	
            (3) 

 

Hence, we got a polynomial of order (N-1). This is 

the pioneering work of Schelkunoff (1943) that he 

related a polynomial to the radiation pattern of the 

linearly phased array (Schelkunoff, 1943). Polynomial 

of the array factor has (N-1) roots on the unit circle in 

the complex plane. Zeros of the above polynomial has 

fixed positions along the unit circle. These positions 

can be named as &
, &�, &%, … … … , &
	
 with their 

corresponding directions �
, ��, �%, … … … , �
	
 

respectively. Polynomial of the array factor can be 

expressed in the form of product of the binomials: 

 

�� = ( − &
)( − &�)( − &%) … … … ( − &
	
)(4) 

 

where, &
, &�, &%, … … … , &
	
 are roots of the 
polynomial and these roots corresponds to the nulls of 
the array factor in the following fixed directions 
�
, ��, �%, … … … , �
	
. In simple words, we cannot 
steer nulls with such kind of uniform linear array. In 
order to rotate zeros or roots of the polynomial of the 
array factor on the unit circle of complex plane in 
arbitrary directions, coefficients of the polynomial 
should be changed accordingly. To steer nulls in the 
arbitrary directions, weights of the array elements must 
be updated (Karim and Viberg, 1996). Therefore, array 
factor can be expressed in the following way for the 
array of N elements: 
 

�� = �) + �
 + �� � +  … … … + �
	
 
	
  (5) 

NULL STEERING TECHNIQUES 

 

Null steering without using phase shifters: The 

technique Null Steering method using Real Weights 

(NSRW) uses current amplitudes to steer nulls (Vu, 

1984). By varying current amplitudes, arbitrary nulls 

can be generated towards desired locations. Main beam 

is steered using phase shifters in the technique. In other 

words, main beam can be scanned by controlling the 

progressive phase shift only and jammers or noise 

sources at different locations can be suppressed by 

pointing nulls towards their locations and this can be 

achieved easily by varying only current amplitudes 

appropriately. Distribution of current amplitudes of the 

linear array is symmetrical about its center, which 

drastically reduces computational time to half. If 

jammers or noise sources are less than half to the total 

number of elements in the array then extra nulls can be 

used to suppress side lobe levels of the main beam 

which definitely improves radiation pattern of array 

factor for better communication. To achieve null 

steering without using phase shifters, the technique 

selects a set of zeros occurring in conjugate pairs on 

unit circle in complex plane. At first, to simplify our 

illustrations, we consider the following two cases: 

 

• Case-1 (odd number of elements): 

 

* =
+ − 1

2
 

 

where, 

N  = Number of elements in the array 

K  = Number of achievable arbitrarily nulls 

 

Array factor for array of odd number of elements 

will be expressed as follows: 

 

�� = ( − &
)( − &

∗)( − &�)( − &�

∗) … … … 
( − &-)( − &-

∗)                                                  (6) 

 

• Case-2 (even number of elements): 

 

K = N/2 

 

where, 

K-1 = Number of achievable arbitrary nulls. 

 

In this case, pattern of the array factor becomes 

like this: 

 

�� = ( + 1)( − &
)( − &

∗) … … … ( − &-	
) 

( − &-	

∗ )                              (7) 

 

Here we noticed an extra factor (z + 1) which has 

no complex conjugate pair and this unpaired factor has 
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zero at z = -1 on the unit circle. Now we will extract 

some important conclusions from above array factor. 

Consider one pair from the product of binomials of the 

array factor: 

 

( − &
)( − &

∗) =  � − (&
 + &


∗) + |&
|� 

=  � − 2/�(&
) + 1 
 
It is clear from the above result that each pair of 

factors generates real coefficients and by combining the 
results of all pairs of factors we get the polynomial of 
the array factor which has all coefficients real. In other 
words, phases of the currents are omitted and only 
amplitudes of the currents are involved in the array 
pattern. Hence, we have been established a technique in 
which no phase changes are required for steering the 
arbitrarily nulls and coefficients of the polynomial of 
the array factor are solely determined by the current 
amplitudes. But unfortunately, we are achieving this 
technique at some cost. And that cost is, the total 
number of steerable nulls that can be produced is 
effectively halved to the total number of the elements in 
array. To illustrate the proposed technique 
mathematically we consider an array of seven elements 
combined linearly: 

 

N = odd = 2K + 1 = 7 

 

Steerable nulls for this array will be K = 3 and 

same number of real coefficients of the polynomial of 

the array factor will be found, next. Array factor for 

such an array can be modeled in this way as shown 

below: 

 

�� = ( − &
)( − &

∗)( − &�)( − &�

∗)( − &%) 

( − &%
∗)                                             (8) 

 

We know that &� is root of the array factor for the 

given array and is calculated as: 

 

&� = exp($��) = ���5 = ����� + $�67�� 

 

where, 

�� = � + ������� 

�  = ������8 

�8  = 9:67 ;�:9 �6&��<6�7 

�� = :&;6<&:&= �6&��<6�7� <�>:&�� 7?@@� 

 

Then symmetrical array factors becomes like this: 

 

�� = 1 − (2A) + (3 + 4D) � − (4A + 8&) % +
(3 + 4D) F − (2A) G +  H                            (9) 

 

where,  

A = ����
 + ����� + ����% 

D = ����
����� + ����
����% + ���������% 

& = ����
���������% 

 
 
Fig. 1: Basic structure for independent null steering 

 
But the proposed array factor with symmetrical 

weights for such an array was as follows: 

 

�� = 1 + I
 + I� � + I% % + I� F + I
 G +  H (10) 

 

where, 

 

I
 = −2A, I� = 3 + 4D, I% = −4A − 8& 

 

Independent null steering by decoupling the real 

weights: Although, Vu (1984) contributed to the field 

of adaptive null steering very efficiently, but two 

problems were could not be resolved. Firstly, steerable 

nulls were effectively reduced to half the total number 

of elements in the array. Secondly, steerable nulls were 

coupled to each other. To change one null position, all 

null positions have to be calculated again even if they 

were not intended to be steered. In other words, the 

algorithm was not capable to steer nulls independently. 

Ibrahim (1991) addressed second problem in 

deliberately. The technique, Independent Null Steering 

by decoupling the Real Weights (INSRW), presents a 

method by which nulls are decoupled from each other 

and only weight of the desired null will be updated in 

order to change the corresponding null location. Hence, 

each null is linked to a certain weight. To change 

position of one null, there is no need to update 

(recalculate) all other weights as well, what we need is 

only to change the linked weight to that null. For this 

purpose, the array is arranged in combination of sets, 

where each set consists on three-elements as shown in 

Fig. 1. 

The middle element is multiplied to its weight 

before adding to other two elements of the set. Array 

factor of this arrangement can be expressed in the 

following expression: 

 

�� = ( − &�)( − &�
∗) 

 

where, &� = ���, is root of the array factor lies on unit 

circle of complex plane: 
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Fig. 2: Structure for the array of seven elements for 

independent null steering 

 

�� =  � − (&�
∗ + &�) + 1 = 1 + J� +  �       (11) 

 

where, 

 

J� = −(&�
∗ + &�) = −2�����             (12) 

 

This basic arrangement can steer one null in 

direction of ��. Maximum value of this weight is +2 

while minimum value is -2, where negative sign can be 

achieved by +� or – � phase bit available in phase 

shifter of the element. Now we will normalize the 

radiation pattern of the basic set of elements.  

Let,  = ���. Then AF becomes: 

 

�� = 1 − 2�����(���� + $�67�) + (���� + $�67�)� 

= 2(���� + $�67�)(���� − �����) 

   

Hence, the proposed normalized array factor is 

expressed as: 

��L = (���� − �����) = cosO������ + �P +
Q5

�
   (13) 

 

Proposed structure for seven elements is shown in 

Fig. 5. The proposed structure has nine attenuators with 

same number of summers. Three sets of attenuators 

have been used and each set has attenuators of the same 

value. First set of attenuators is represented by B1 while 

second set and third set is named with B2 and B3 

respectively. Important thing to be noticed in the 

structure is the number of sets of attenuators, because 

this number declares the number of independent 

steerable nulls. In this case, we have three sets of 

attenuators i.e., B1, B2 and B3. It means independently 

control-able nulls are also three. And each set or array 

of attenuators is associated to one independently 

steerable null. As shown in the Fig. 2 output of each 

middle element is split into three paths. 

Elements at corners have only one path while next 

elements have two equally paths. And the same process 

is repeated for next two stages, before to get final 

output. Our final normalized radiation pattern is as 

following: 

 

��L = ∏ ��(�)(
	
)/�
��
                            (14) 

 

= ∏ O���� −
Q5

�
P(
	
)/�

��
              (15) 

 

Independent null steering by decoupling the 

complex weights: The technique Independent Null 

Steering by decoupling Complex Weights (INSCW) 

presents a new way to increase number of steerable 

nulls (Khan et al., 2011). The technique uses structure 

to decouple the complex weights. The proposed 

structure needs (N-1) sets of digital attenuators for an 

array of N elements whereby each set has same value of 

weights. Moreover, these digital attenuators should be 

capable of handling of complex weights. In other 

words, attenuators must be qualified to adjust amplitude 

and phase of the current accordingly. Two input line 

summers are used in the structure by which one of two 

input lines is multiplied by negative of the weight 

before added in summer. Required number of digital 

complex attenuators and summers for an array of N 

elements can be calculated by N (N-1) /2 to elaborate 

fully the presented technique, two different cases are 

considered here. 

 
Table 1: Comparison between different algorithms 

Tech. Ele. Nulls Att. Sum Side lobes 

NSRW 7 3 3 1 -11 to -17 dB 

NSRW 8 3 3 1 -21 to -22 dB 

INSRW 7 3 9 9 -7 to -13 dB 
INSRW 8 3 9 16 -24 to -25 dB 

INSCW 7 6 21       21 -10 to -11 dB 

INSCW 8 7 23 28 -17 to -20 dB 
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Fig. 3: Structure for the array of seven elements for 

independent null steering 

 

Table 1 shows the required hardware for the array 

of each case. For illustration of the method an array of 

seven elements is considered. Proposed structure for the 

array of seven elements is shown in Fig. 3. 

Six sets of complex digital attenuators are required 

and same number of stages is involved. Each stage uses 

attenuators of the same set. And in a set all attenuators 

have same values (weights). For this array twenty-one 

attenuators and same number of summers are used. 

Two input line summers are used in structure. First 

input line is multiplied with weight before to add with 

second input line. General expression can modeled for 

all stages of the structure for the array of N-elements 

which are uniform linearly phased. There are (N-1) 

stages for this array:  

 

=�,� =  �	
( −  
)( −  �) … … … ( −  T) 

 

where, 

6 = 1,2, … … … + − 1 

$ = 1,2, … … … + − 2 

� = 1,2, … … … 6 
 

and final output for such an array can also be modeled 

as the following way: 

 

=
	
,
 = ( −  
)( −  �)( −  %) … … … ( −  
	
) 

 

Hence,  

 

�� = ( −  
)( −  �)( −  %)( −  F) 
( −   G)( −  H) 

   

where, 

 

 � = exp($��) 

 

RESULTS AND SIMULATION 

 

In this section results and simulations have been 

presented. Two cases are considered with the help of 

four graphs. Required hardware for each case is shown 

in Table 1. For simplicity, distance between the 

adjacent elements of each array is taken λ/2 There are a 

few parameters that should be considered to estimate 

the performance of the algorithm such as: number of 

elements in the array, depth of each null, side lobe 

levels, width of the main lobe, computational time, 

number of steerable nulls, system implementation 

complexity, hardware cost and the technique reliability. 

We will focus on all such parameters in the following 

simulation of each case to check the worth of the 

proposed solution. 

 

Case-1: For simulation of this case, we considered an 

array of seven elements. Using this array, Vu (1984) 

method is able to produce three arbitrary nulls in the 

direction of jammers, while Ibrahim (1991) method can 

handle three arbitrary nulls independently but at the 

cost  of nine attenuators and nine summers. And Khan 

et al. (2011) method can steer six nulls independently in 

arbitrary directions. In other words, last method makes 

this array fully functioned as all possible nulls are taken 

under control with the help of twenty-one digital 

complex attenuators and two input line summers and 

complex weights are used to steer nulls while main 

beam is controlled by progressive phase shift. 

Calculated coefficients of the array are shown in the 

Table 1. For this case, interfering jammers are 

considered in the following directions: 

 

�U = {30X, 60X, 130X} 
 

�[ = {30X, 60X, 120X} 

 

�\ = {30X, 60X, 70X , 120X, 130X , 160X} 
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Fig. 4: Comparison of techniques for seven elements 

 

 
 
Fig. 5: Comparison of techniques for seven elements 

 
Main beam direction is taken in the direction, 

�8 = 90X. By referring Fig. 4, we can see that jammers 
directions are nulled appropriately while main beam is 
pointing towards its desired direction. Estimated 
weights for the method of NSRW, INSRW and INSCW 
are shown below, respectively: 

 
ZT = {1: 3.58: 6.86: 8.41: 6.86: 3.58: 1} 
 
ZH = {1.99: 0.10: 1.14} 
 
Zz = {0.38 - 0.92i: 0.90 - 1.63i: 1.87 - 1.91: 2.75 - 

1.83: 2.48 - 0.99i: 1.85 - 0.20i: 1} 
 

For further investigation on the technique, a change 
is made with two interfering jammer directions while 
positions of other interferers are kept on their respective 
previous locations as shown below: 

 

�
 = 30X
^�_`ab�XL �8 acdLe`^ bX
fggggggggggggggggh �L`i
 = 40X 

 

�� = 60X
^�_`ab�XL �8 acdLe`^ bX
fggggggggggggggggh �L`i� = 65X 

 
Figure 5 shows this alteration appropriately and we 

can confirm the required variations accordingly while 
calculated weights of the array with altered null 
locations are shown below for each method, orderly: 

 
 
Fig. 6: Comparison of techniques for eight elements 

 
ZT = {1: 3.26: 4.71: 4.88: 4.71: 3.26: 1} 
 
ZH = {1.68: 0.10: 1.12} 
 
Zz = {-0.16 - 0.99i: 0.19 - 1.49i: 1.02 - 2.15i: 1.82 

- 2.14i: 1.96 - 1.35i: 1.44 - 0.43i: 1} 
 

Hence, it is clear from above calculated weights 
that all weights of the array factor of Vu (1984) method 
are altered. But  Ibrahim (1991)  technique  and  Khan 
et al. (2011) technique updated only first and second 
weight values and there was no need to calculate all 
other weights as well. 

Further, it is also verified from the graph that only 
places of two nulls have been changed while other nulls 
are still pointing towards their previous locations. Main 
beam is not disturbed and is pointing towards �8 = 90X. 
 
Case-II: Linear array of eight antennas is considered in 
this case. NSRW method produces three randomly 
generated nulls towards the directions of the jammers, 
while using INSRW method we get independently 
control on three nulls. But, by implementing INSCW 
method, seven nulls can be steered independently in 
arbitrary directions and this is the maximum control on 
output that any array can produce. For NSRW and 
INSRW, this is the same situation (same number of 
controlled nulls) arose in previous case. Moreover, 
number of arbitrary nulls is same either array of seven 
elements is used or array of eight elements is used. But 
radiation pattern of the array of eight elements is much 
better than that of the array of seven elements. 
Interfering jamming signals are taken in following 
directions: 
 

�U = {50X, 120X , 150X} 
 
�[ = {40X, 60X, 130X} 
 
�\ = {20X, 40X, 50X , 60X, 120X , 130X, 150X} 

 
While main beam is taken in the direction, 

�8 = 90k. Resulted radiation pattern of the selected 
array with given parameters is shown in Fig. 6. 
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Fig. 7: Comparison of techniques for eight elements 

 

Calculated complex weights of the array 

corresponding to the above set of interference 

directions are as follows: 

 

ZT = {1: 2.74: 3.76: 3.99: 3.99: 3.76: 2.74: 1} 

 

ZH = {0.87: -5.67e - 0.16: 0.87} 

 

Zz = {0.88 - 0.48i: 3.29 - 1.30i: 6.58 - 2.18i: 9.1 - 

2.57i: 9.21-2.14i: 6.81-1.27i: 3.50 - 0.45i: 1} 

 

Each null is controlled by its linked weight and in 

case of any change in the environment those weights 

which are associated to the displaced jammers will be 

updated. Next in order to verify the promised thing we 

will shift two randomly selected jammers towards new 

locations: 

 

�U = { 30X, 125X , . } 

 

�[ = { 50, . , 140X} 

 

�\ = { . , . , 30X, . , 125X , . , . } 
 

Weights associated to these nulls will be changed 

accordingly as: 

 

ZT = {1: 4.58: 10.44: 15.27: 15.27: 10.44: 4.58: 1} 

ZH = {1.99: 0.10: 1.14} 

Zz = {1.0 - 0.03i: 4.21 - 0.16i: 8.94 - 0.43i: 12.53 - 

0.40i: 12.53 - 0.02i: 8.95 + 0.13i: 4.21 + 

0.02i: 1} 

 

Simulation of this modified version of the radiation 

pattern of the aforesaid techniques is shown in Fig. 7. 

Hence it is clear from the figure that only 

corresponding nulls have changed their locations while 

other nulls are keeping their previous locations. In this 

simulation, main lobe was not disturbed from its 

previous location, �8 = 90X. It is still pointing towards 

its previous direction as shown in the Fig. 7. 

CONCLUSION 
 

Performance analysis of different null steering 
techniques in the field of adaptive beam forming has 
been presented. Three null steering techniques were 
considered for comparison analysis. Table 1 shows 
achieved steerable nulls, required hardware and side-
lobe levels of each technique. Vu (1984) technique is 
cost efficient but is time consuming for larger arrays. 
Ibrahim (1991) technique is time efficient in this regard 
but steerable nulls are effectively halved to total 
number of elements in the array. However, this 
technique uses real weights and de-couples its weights 
to attain independent null steering but real weights 
reduces the number of steerable nulls to the half of the 
total number of elements in the array. In this 
perspective, Khan et al. (2011) technique is leading as 
it is achieving control on all possible nulls of the 
radiation pattern and its feature of independent null 
steering makes it time efficient for larger arrays. 
Independent null steering is an attractive feature but it 
increases hardware cost as well. 
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