Research Journal of Applied Sciences, Engineering and Technology 5(15): 3975-3977, 2013

DOI:10.19026/rjaset.5.4462

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: November 08, 2012 Accepted: December 06, 2012 Published: April 25, 2013

Research Article

Neighborhoods of Certain Classes of Generalized Ruscheweyh Type Analytic Functions of Complex Order

¹Jamal Kazemi Asl and ²Hesam Mahzoon

¹Payame Noor University, Bandar Imam Khomeini, Iran

²Department of Mathematics, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran

Abstract: In this study, we introduce and study the (n, δ) neighborhoods of subclasses $S_n(\gamma, \lambda, \beta, \eta)$ $R_n(\gamma, \lambda, \beta, \mu, \eta)$ $S^{\alpha}_n(\gamma, \lambda, \beta, \mu, \eta)$ and $R^{\alpha}_n(\gamma, \lambda, \beta, \mu, \eta)$ of the class A(n) of normalized analytic functions in $U = \{z \in \mathbb{C} : |z| < 1\}$ with negative coefficients, which are defined by using of the generalized Ruscheweyh derivative operator.

Keywords: Analytic functions, convex functions, neighborhoods generalized ruscheweyh derivative, Star like functions, univalent functions

INTRODUCTION

Let A(n) denote the class of functions f of the form:

$$f(z) = -\sum_{k=n+1}^{\infty} \alpha_k z^k (\alpha_k \ge 0, k \in \mathbb{N} = \{1, 2, ...\} =)$$
 (1)

which are analytic in the open unit disk:

$$U = \{z \in \mathbb{C} : |z| < 1\}$$

For any function $f \in A(n)$ and $\delta \ge 0$, we define:

$$N_{n,\delta}(f) = \left\{ g \in A(n) : g(z) = z - \sum_{k=k+1}^{\infty} b_k z^k \text{ and } \sum_{k=n+1}^{\infty} k |\alpha_k - b_k| \le \delta \right\}$$
 (2)

which is the (n, δ) neighborhood of f. For the identity function e(z) = z, we have:

$$N_{n,\delta}(f) = \left\{ g \in A(n) : g(z) = z - \sum_{k=k+1}^{\infty} b_k z^k \text{ and } \sum_{k=n+1}^{\infty} k \left| b_k \right| \le \delta \right\}$$
 (3)

The concept of neighborhoods was first introduced by Goodman (1983) and then generalized by Ruscheweyh (1981).

A function $f \in A$ is star like of complex order $\gamma(\gamma \in \mathbb{C}/\{0\})$ that is, $f \in C_n(\gamma)$ if:

$$R\left\{1 + \frac{1}{\gamma} \left[\frac{zf'(z)}{f(z)} - 1\right]\right\} > 0(z \in U, \gamma \in \mathbb{C}/\{0\})$$
 (4)

A function $f \in A$ (n) is said to be convex of complex order $\gamma(\gamma \in /\{0\})$ that is, $f \in C_n(\gamma)$ if:

$$R\left\{1 + \frac{1}{\gamma} \frac{zf^{''}(z)}{f'(z)}\right\} > 0(z \in U, \gamma \in \mathbb{C}/\{0\})$$
 (5)

The classes $S_n^*(\gamma)$ and $C_n(\gamma)$ stem essentially form the classes of starlike and convex functions of complex orders which were introduced earlier by Nasr and Aouf (1985). The Hadamard product of two power series:

$$f(z) = z + \sum_{k=2}^{\infty} \alpha_k z^k$$
 and $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$

is defined as
$$(f * g)(z) = z + \sum_{k=2}^{\infty} \alpha_k b_k z^k$$
.

The main objective of this study is to use a recent generalization of the Ruscheweyh derivative operator (Al-Shaqsi and Darus, 2007) denoted D^{λ}_{η} , define as follows:

$$D_{\eta}^{\lambda}f\left(z\right) = \frac{z}{\left(1-z\right)^{1+\lambda}} * D\eta f\left(z\right) \left(f \in A\left(n\right), z \in U\right)$$

where, * stands for the Hadamard product of two power series. Further, we have:

$$D_{\eta}f\left(z\right)\!=\!\left(1\!-\!\eta\right)\!f\left(z\right)\!+\eta zf'\!\left(z\right)\!,\!\lambda\!>\!-1,\eta\!\geq\!0,z\!\in\!U.$$

We can easily see that $D^{\lambda}_{\ \eta}$ admits a representation of the form:

$$D_{\eta}^{\lambda}f\left(z\right)=z-\sum_{k=k+l}^{\infty}\left[1+\left(k-l\right)\eta\right]\!\!\left(\!\!\begin{array}{c}\lambda+k-l\\k-l\end{array}\!\!\right)\!\alpha_{k}z^{k}\left(\lambda>-l,f\in A\!\left(n\right),\eta\geq0\right) \tag{6}$$

Make use of the following standard notation:

$${\binom{K}{k}} = \frac{{\binom{K(K-1)(K-2)...(K-k+1)}}}{k!} (K \in \mathbb{C}, k \in \mathbb{N})$$

A function $f \in A$ (n) is said to belong to the class $S_n(\gamma, \lambda, \beta, \eta)$ if:

Res. J. Appl. Sci. Eng. Technol., 5(15): 3975-3977, 2013

$$\left| \frac{1}{\gamma} \left(\frac{z \left(D_{\eta}^{\lambda} f(z) \right)^{'}}{D_{\eta}^{\lambda} f} - 1 \right) \right| < \beta, \tag{7}$$

where, $\lambda \in \mathbb{C} / \{0\}, \lambda > -1, 0 < \beta \le 1, \eta \ge 0 \text{ and } z \in \mathbb{U}.$

A function $f \in A$ (n) is said to belong to the class $R_n(\gamma, \lambda, \beta, \mu, \eta)$ if:

$$\left| \frac{1}{\gamma} \left((1 - \mu) \frac{D_{\eta}^{\lambda} f(z)}{z} + \mu \left(D_{\eta}^{\lambda} f(z) \right) - 1 \right) \right| < \beta, \tag{8}$$

where, $\lambda \in \mathbb{C} / \{0\}, 0 < \beta \le 1, \eta \ge 0, \lambda > -1 \text{ and } z \in U$.

Neighborhoods for classes: $S_n(\gamma, \lambda, \beta, \eta)$ and $R_n(\gamma, \lambda, \beta, \mu, \eta)$

Lemma 1: A function $f \in S_n^{\alpha}(\gamma, \lambda, \beta, \eta)$ if and only if:

$$\sum_{k=n+1}^{\infty} \Bigl[1+\bigl(k-1\bigr)\eta\,\Bigr] \! \binom{\lambda+k-1}{k-1} \! \Bigl(\beta \bigl|\gamma\bigr|+k-1\Bigr)\alpha_k \leq \beta \bigl|\gamma\bigr|. \tag{9}$$

Proof: Let $f \in S_n(\gamma, \lambda, \beta, \eta)$ Then, by (6) we can write:

$$R\left\{\frac{z\left[\left(D_{\eta}^{\lambda}f(z)\right)'\right]}{D_{\eta}^{\lambda}f(z)}-1\right\}>-\beta|\gamma|\left(z\in U\right). \tag{10}$$

Equivalently:

$$R\left[-\frac{\sum_{k=n+1}^{\infty}\left[1+(k-1)\eta\right]\binom{\lambda+k-1}{k-1}(k-1)\alpha_{k}z^{k}}{z-\sum_{k=n+1}^{\infty}\left[1+(k-1)\eta\right]\binom{\lambda+k-1}{k-1}\alpha_{k}z^{k}}\right] > -\beta|\gamma| \left(z \in U\right).$$

$$(11)$$

We choose values of Z on the real axis and let $Z \rightarrow 1$ -, through real values, the inequality (11) yields the desired condition (9). Conversely, by applying the hypothesis (2.1) and letting |Z| = 1 we have:

$$\left|\frac{z\big(D_{\eta}^{\lambda}f\big(z\big)\big)'}{D_{\eta}^{\lambda}f\big(z\big)}-1\right| = \frac{\left|\sum_{k=n+1}^{\infty} \left[1+\big(k-1\big)\eta\right] \binom{\lambda+k-1}{k-1}(k-1)\alpha_{k}z^{k}\right|'}{z-\sum_{k=n+1}^{\infty} \left[1+\big(k-1\big)\eta\right] \binom{\lambda+k-1}{k-1}\alpha_{k}z^{k}}\right|'$$

$$\leq \frac{\beta \left| \gamma \right| \left(1 - \sum_{k=n+1}^{\infty} \left[1 + \left(k-1\right)\eta\right] \binom{\lambda+k-1}{k-1} \alpha_k}{1 - \sum_{k=n+1}^{\infty} \left[1 + \left(k-1\right)\eta\right] \binom{\lambda+k-1}{k-1} \alpha_k}$$

 $\leq \beta | \gamma$

Hence, by the maximum modulus Theorem, we have $f \in R_n$ $(\gamma, \lambda, \beta, \eta)$ Similarly, we can prove the following Lemma.

Lemma 2: A function $f \in R_n(\gamma, \lambda, \beta, \mu, \eta)$ if and only if:

$$\sum_{k=n+1}^{\infty} \left[1+\left(k-1\right)\eta\right] \binom{\lambda+k-1}{k-1} \left[\mu\left(k-1\right)+1\right]\alpha_{_{k}} \leq \beta \left|\gamma\right|. \tag{12}$$

Theorem 1: if:

$$\delta = \frac{\left(n+1\right)\beta\left|\gamma\right|}{\left(\beta\left|\gamma\right|+n\right)\left(1+n\eta\right)\binom{\lambda+n}{n}},\left(\left|\gamma\right|<1\right),\tag{13}$$

Then, $S_n(\gamma, \lambda, \beta, \eta) \cap N_{n,\delta}(e)$

Proof: Let $f \in S_n(\gamma, \lambda, \beta, \eta)$. By lemma 2, we have,

$$(\beta|\gamma|+n)(1+n\eta)\binom{\lambda+n}{n}\sum_{k=n+1}^{\infty}\alpha_k \leq \beta|\gamma|$$

So,

$$\sum_{k=n+1}^{\infty} \alpha_{k} \leq \frac{\beta |\gamma|}{\left(\beta |\gamma| + n\right) \left(1 + n\eta\right) \binom{\lambda + n}{n}}$$
(14)

Using (9) and (14), we have:

$$\begin{split} \big(1+n\eta\big) & \binom{\lambda+n}{n} \sum_{k=n+1}^{\infty} k\alpha_k \leq \beta \big| \gamma \big| + \big(1-\beta \big| \gamma \big| \big) \big(1+n\eta\big) \binom{\lambda+n}{n} \sum_{k=n+1}^{\infty} \alpha_k \\ & \leq \beta \big| \gamma \big| + \big(1-\beta \big| \gamma \big| \big) \big(1+n\eta\big) \binom{\lambda+n}{n} \\ & \frac{\beta \big| \gamma \big|}{\big(\beta \big| \gamma \big| + n\big) \big(1+n\eta\big) \binom{\lambda+n}{n}} \\ & \leq \frac{(n+1)\beta \big| \gamma \big|}{\big(\beta \big| \gamma \big| + n\big)} \Big(\big| \gamma \big| < 1 \Big), \end{split}$$

That is:

$$\sum_{k=n+1}^{\infty}k\alpha_{_{k}}\leq\frac{\left(n+1\right)\!\beta\left|\gamma\right|}{\left(\beta\left|\gamma\right|+n\right)\!\left(1+n\eta\right)\!\binom{\lambda+n}{n}}=\delta.$$

Thus, by the definition given by (3), $f \in N_{n,\delta}(e)$.

Theorem 2: if:

$$\delta = \frac{(n+1)\beta|\gamma|}{(\mu n+1)(1+n\eta)\binom{\lambda+n}{n}}$$
 (15)

Then, $R_n(\gamma, \lambda, \beta, \mu, \eta) \subset N_{n,\delta}(e)$.

Proof: Let $f \in R_n(\gamma, \lambda, \beta, \mu, \eta)$. Then, by lemma 2, we have:

$$\Big(\mu n+1\Big)\Big(1+n\eta\Big)\!\binom{\lambda+n}{n}\!\sum_{k=n+1}^{\infty}\;\alpha_{k}\leq\beta\,\Big|\gamma\Big|,$$

Which yields the following coefficient inequality:

$$\sum_{k=n+1}^{\infty} \alpha_{k} \leq \frac{\beta |\gamma|}{(\mu n+1)(1+n\eta) \binom{\lambda+n}{n}}$$
 (16)

Using (12) and (16), we also have:

$$\begin{split} \mu \Big(1+n\eta\Big) & \binom{\lambda+n}{n} \sum_{k=n+1}^{\infty} k\alpha_k \leq \beta \left|\gamma\right| + \Big(\mu-1\Big) \Big(1+n\eta\Big) \binom{\eta+n}{n} \sum_{k=n+1}^{\infty} \alpha_k \\ & \leq \beta \left|\gamma\right| + \Big(\mu-1\Big) \Big(1+n\eta\Big) \binom{\eta+n}{n} \\ & \frac{\beta \left|\gamma\right|}{\Big(\mu n+1\Big) \Big(1+n\eta\Big) \binom{\lambda+n}{n}}, \end{split}$$

That is:

$$\sum_{k=n+1}^{\infty}k\alpha_{k}\leq\frac{\left(n+1\right)\!\beta\!\left|\gamma\right|}{\left(\mu n+1\right)\!\left(1+n\eta\right)\!\binom{\lambda+n}{n}}=\delta.$$

Thus, by the definition given by (3), $f \in N_{n, \delta}(e)$

Neighborhoods for classes: $S^{\alpha}_{n}(\gamma, \lambda, \beta, \eta)$ and $R^{\alpha}_{n}(\gamma, \lambda, \beta, \mu, \eta)$

In this section, we define the neighborhood for each of the classes $S_n^{\alpha}(\gamma, \lambda, \beta, \eta)$ and $S_n^{\alpha}(\gamma, \lambda, \beta, \mu, \eta)$ A function $f \in A(n)$ is said to be in the class $S_n^{\alpha}(\gamma, \lambda, \beta, \eta)$ if there exists a function $g \in S_n(\gamma, \lambda, \beta, \eta)$ such that

$$\left| \frac{f(z)}{g(z)} - 1 \right| < 1 - \alpha \ \left(0 \le \alpha \le 1, z \in U \right). \tag{17}$$

Similarly, a function $f \in A(n)$ is said to be in the class $R^{\alpha}_{n}(\gamma, \lambda, \beta, \mu, \eta)$ if there exists a function $g \in R^{\alpha}_{n}(\gamma, \lambda, \beta, \mu, \eta)$ such that the inequality (17) holds true.

Theorem 3: If $g \in S_n(\gamma, \lambda, \beta, \mu, \eta)$ and

$$\alpha = 1 - \frac{(\beta|\gamma| + n)\delta(1 + n\eta)\binom{\lambda + n}{n}}{(n+1)\left[(\beta|\gamma| + n)(1 + n\eta)\binom{\lambda + n}{n} - \beta|\gamma|\right]}$$
(18)

Then $N_{n,\delta}(g) \subset S_n^{\alpha}(\gamma,\lambda,\beta,\mu,\eta)$.

Proof: Let $f \in N_{n,s}(g)$ then, by (2), we have:

$$\sum_{k=1}^{\infty} k \left| \alpha_{k} - b_{k} \right| \leq \delta, \tag{19}$$

Which yields that coefficient inequality:

$$\sum_{k=n+1}^{\infty} |\alpha_k - b_k| \le \frac{\delta}{n+1} (n \in \mathbb{N})$$
 (20)

Since $g \in R^{\alpha}_{n}(\gamma, \lambda, \beta, \mu, \eta)$ by (14), we have:

$$\sum_{k=n+1}^{\infty} b_{k} \leq \frac{\beta |\gamma|}{(\beta |\gamma| + n)(1 + n\eta) \binom{\lambda + n}{n}}$$
(21)

So that:

$$\begin{split} \left| \frac{f(z)}{g(z)} - 1 \right| &< \frac{\sum_{k=n+1}^{\infty} |\alpha_k - b_k|}{1 - \sum_{k=n+1}^{\infty} b_k} \\ &\leq \frac{\delta}{(n+1)} \frac{(\beta|\gamma| + n)(1 + n\eta) \binom{\lambda + n}{n}}{\left[(\beta|\gamma| + n)(1 + n\eta) \binom{\lambda + n}{n} - \beta|\gamma| \right]} \\ &= 1 - \alpha \end{split}$$

Thus, by definition, $f \in S^{\alpha}_{n}(\gamma, \lambda, \beta, \eta)$ for α given by (18) Thus, the proof is complete.

REFERENCES

Al-Shaqsi, K. and M. Darus, 2007. On certain subclass of analytic univalent functions with negative coefficients. Appl. Math. Sci., 13: 1121-1128.

Goodman, A.W., 1983. Univalent Functions. Volume I and II, Mariner Publishing Company Inc., Tampa, Florida.

Nasr, M.A. and M.K. Aouf, 1985. Starlike function of complex order. J. Natur. Sci. Math., 25: 1-12.

Ruscheweyh, S., 1981. Neighborhoods of univalent functions. Proc. Amer. Math. Soc., 81: 521-527.