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Research Article 

Global Convergence of a New Nonmonotone Algorithm 
 

Jing Zhang 
Basic Courses Department of Beijing Union University, Beijing 100101, China 

 
Abstract: In this study, we study the application of a kind of nonmonotone line search in BFGS algorithm for 
solving unconstrained optimization problems. This nonmonotone line search is belongs to Armijo-type line searches 
and when the step size is being computed at each iteration, the initial test step size can be adjusted according to the 
characteristics of objective functions. The global convergence of the algorithm is proved. Experiments on some 
well-known optimization test problems are presented to show the robustness and efficiency of the proposed 
algorithms. 
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INTRODUCTION 
 
Unconstrained optimization problems: 
 

nxxf R∈,)(min                    (1) 

The quasi-Newton algorithm BFGS method 
because of its stable numerical results and fast 
convergence is recognized as one of the most effective 
methods to solve the unconstrained problem (1). 
Iterative formula of this method is as follows: 

kkkk dxx α+=+1  

kkk gBd 1−−=  )1( >k  

11 gd −=                                                              (2) 

where, αk is step length, gk = ݂׏ሺݔ௞ሻ, ݀௞ is the search 
direction:  
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where, sk = xk+1–xk, yk = gk+1–gk. Inexact line search, 
especially in the monotone line search method global 
convergence of many results. Byrd et al. (1987) proved 
in addition to the DFP method of Broyden family Wolfe 
line search, global convergence for solving convex 
minimization problem. Byrd and Nocedal (1989) proved 
the global convergence of the BFGS method Armijo line 
search for solving convex minimization problem. Sun 
and Yuan (2006) constructed a counter-example to show 
that the BFGS method under  the  Wolfe  line  search  
for non-convex minimization problem does not have 

global convergence. Since 1986, Grippo et al. (1986) 
first proposed a non-monotonic linear search technology 
has broader means non-exact line search. One benefit of 
the technology of non-monotonic is does not require the 
function value decreases, so that the step the selection of 
a more flexible, even with step as large as possible. 
Panier and Tits (1991) proved that a nonmonotonic 
search technology to avoid Maratos effect. A large 
number of numerical results show that non-monotonic 
search is better than the monotonous search numerical 
performance; in particular, it helps to overcome along 
the bottom of narrow winding produces slow 
convergence of iterative sequence (Dai, 2002a; Hüther, 
2002). Quasi-Newton method to introduce the 
nonmonotonic technology also has its practical 
significance, but not more discussion on global 
convergence. Han and Liu (1997) prove that the 
nonmonotone Wolfe modified linear search, BFGS 
method global convergence of convex objective 
function. Since the beginning of this century, new non-
monotone line search methods continue to put forward, 
such as the Zhang and Hager (2004) and Zhen-Jun and 
Jie (2006) proposed a new non-monotone line search 
method.  

 
NONMONOTONIC LINE SEARCH 

 
This study a class of non-monotonic linear search is 

belongs to the Armijo type of linear search the 
ideological sources. Dai (2002c)  proposed a class of 
monotone line search him and conjugate gradient 
method combined study. Dai (2002b) monotonous line 
search is: find αk, so that the following two formulas: 

 
k

T
kkkkkk dgxfdxf δαα ≤−+ )()(  
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and 
 

2
111 ||||0 +++ −≤≠ kk

T
k ddg σ  

 
At the same time set up. This study ԡ. ԡ  refers to 

the Euclidean norm. In this study, the two equations 
improvements for weaker conditions, further 
transformed into a linear search of non-monotonic and 
the BFGS algorithm combined into a class of quasi-
Newton algorithm. Nonmonotone linear search of the 
text of the study also draws (Zhen-Jun and Jie, 2006), 
the line search in each step to calculate the step length 
factor αk. When to introduce timely changes in the initial 
test step rk, instead follows the Grippo-Lampariello-
Lucidi search in the fixed initial test step. If the initial 
test step is fixed, the non-monotonic class of linear 
search is essentially a class of linear search without 
derivative. Its monotonous situation, initially by Leone 
et al. (1984) study, but there in the form of relatively 
complex; such line search form research this study are 
concise and full of operability. 

Given σ>0, β א ሺ0, 1ሻ, ߜ א ሺ0, 1ሻ, M is a non-

negative integer and to let ݎ௞ ൌ  െ ఙ௚ೖ
೅ௗೖ

ԡௗೖԡమ . Take ߙ௞ ൌ

௠ሺ௞ሻೝೖߚ  , ݉ሺ݇ሻ ൌ 0, 1, 2, … ݉ሺ݇ሻmakes holds the 
smallest non-negative integer: 

 
2

)(0
||||)(max)( kkjkkljkkk dxfdxf αδα −≤+ −≤≤

        (4) 

 
where, l(0) = 0, 0≤l(k)≤min{l(k–1)+1, M}, k≥1. 
Obviously, if dk is a descent direction, that ݀௞

்݃௞ ൏ 0, 
then, when the m(k) sufficiently large, the inequality (4) 
is always true, thus satisfying the conditions αk exist. 
The line search in each iteration, the initial test step 
length is no longer maintained constant, but can be 
automatically adjusted to rk. Global convergence proof 
which will see the reasonableness of this proposal. In 
magnitude, change the initial test step length of practice 
better results can be obtained to calculate the larger step 
length factor αk, thereby reducing the number of 
iterations. 
 

ALGORITHM 
 

Based on this non-monotonous line search 
technique, we give the nonmonotonic following BFGS 
algorithm. 

1° given initial point x0, initial matrix B0 = I (Unit 
matrix). Given constant σ>0, ߳ߚሺ0, 1ሻ, ,ሺ0߳ߜ 1ሻ and 
non-negative integer M . Given iteration terminate error 
ε . Let k: = 0. Calculate gk. If ԡ݃௞ԡ ൏  it is ,ߝ
terminated, xk is what we seek; otherwise, go to 2°. 

2°solution of linear equations calculates the 
direction of the search dk: 

0=+ kkk gdB                 (5) 
 

3°step factor αk calculated according to the non-
monotonic linear search NLS. 

4° let kkkk dxx α+=+1  
 
5° calculated gk+1, if ԡ݃௞ାଵԡ ൏  ,it is terminated ,ߝ

xk+1 is the demand; otherwise, according to the BFGS 
correction formula (3) to give Bk+1. 

 
6° let 1+← kk , go to 2° 

 
Remark: 

 
• In order to step factor calculated in Step 3 to 

take advantage of the non-monotonic linear 
search NLS αk must make the search direction dk  
descent direction, by (5), only to meet ݃௞

் ൌ
 ݀௞ ൌ  െ݃௞

௞ܤ்
ିଵ݃௞ ൏ 0, This requires 

nonmonotonic line search NLS based on 
research in this chapter, every step BFGS 
correction formula Bk+1 is positive definite, it 
see Theorem 1.  

• In order to be able to calculate a larger step 
length factor αk, we can consider a class of 
mixed non-monotone line search that (4) can be 
rewritten as: 
 

},||||max{

)(max)(

2
2

1

)(0

k
T
kkkk

jkkljkkk

dgd

xfdxf

αδαδ

α

−

≤+ −≤≤

 
 

where, δ1, δ2א ሺ0, 1) 
 
Theorem and proof: Nonmonotonic line search global 
convergence proof often needs to meet:  
 
(i) The Sufficient descent conditions: 

2
1 |||| kk

T
k gCdg −≤  

(ii) Boundedness conditions: ԡ݀௞ԡ ൑  ଶԡ݃௞ԡ, whereܥ
C1 and C2 is a positive number. These two 
conditions are strong, difficult to meet the general 
quasi-Newton method. This is also the problem of 
study difficulty.  

 
This study is not BFGS formula to make any 

changes and non-monotone line search NLS1, does not 
require the search direction dk satisfy the conditions (i)-
(ii) of the premise, to prove the global convergence. The 
general assumption in this section is given below: 
 
H1: f(x) order continuous differentiable. 
H2: The level set L0 = {x׀f(x)≤f(x0), xאRn}is convex sets 

and there is c1>0: 
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zxGzzc T )(|||| 2
1 ≤ , 0Lx∈∀ , nz R∈∀                 (6) 

where, G(x) = ׏ଶ݂ሺݔሻ. 
The above assumptions with the references (Byrd 

and Nocedal, 1989) the same, paper (Liu et al., 1995) 
weakened, in particular, is to remove the literature 
(Grippo et al., 1986) desired search direction dk satisfy 
the sufficient descent condition and boundedness 
conditions.  

Assumptions (H1) and (H2) conditions, we easily 
obtain the following results: 

 
• The level set L0 = {x׀f(x) ≤ f(x0), xεRn} is bounded 

closed set. (Proof may see (Sun and Yuan, 2006)) 
• The function f(x) in the level set L0 bounded and 

uniformly continuous 
• [g(x)-g(y)]T(x-y) 

 
0

2
1 ,,|||| Lyxyxc ∈∀−≥ , 

 
where, g(x) = ݂׏ሺݔሻ, ܿଵ ൐ 0 is a constant, such as 
assuming that (H2) as defined. 
 
Proof: To be a vector-valued function g use of the 
integral form of the mean value theorem may: 
 

∫ −−+=−
1

0
d)))((()()( θθ yxyxyGygxg . 

 
Thus, by (6), there exists c1>0, making the: 
 

)()]()([ yxygxg T −−  

)(d))(()(
1

0
yxyxyGyx T −⋅−+−= ∫ θθ  

∫ −≥
1

0

2
1 d|||| θyxc  

2
1 |||| yxc −= . 

 
Lemma: 1 Let Bk is symmetric positive definite matrix, 
௞ݏ

௞ݕ் ൐ 0, Broyden family formula: 
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yyBB )(1 φφ +−+=+
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where, ݒ௞ ൌ  ௬ೖ
௬ೖ

೅௦ೖ
െ

஻ೖೄೖ
௦ೖ

೅஻ೖௌೖ
, when ׎௞ ൒ 0, ௞ାଵܤ

׎  
maintaining positive definite. 
 
Theorem 1: On the assumption that (H1), (H2) 
Conditions, the step factor αk by nonmonotonic line 
search NLS B0 is symmetric positive definite matrix, 
then when ׎௞ ൒ 0, by the correction formula of 
Broyden family Bk also maintained positive definite. 
 
Proof: Proved by induction. When k = 0, B0 is 
symmetric positive definite matrix, the resulting search 

direction d0 downward direction. By nonmonotonic line 
search can find α0, resulting in x1, it is seen from (4):  

 
)(||||)()( 0

2
0001 xfdxfxf <−≤ αδ  

 
As a result, ݔଵ א  :଴. Thus, by Lemma 2.3ܮ
  

0
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By Lemma 1, B1 also maintained positive definite: 

Assume Bk is positive definite, so the resulting 
search direction dk is down direction. Can be found by 
the non - monotone line search NLS αk, resulting xk+1, it 
is seen from (4): 

 
)(||||)(max)( 0

2
111)1(02 xfdxfxf jlj

<−≤ −≤≤
αδ , 

)(||||)(max)( 0
2

222)2(03 xfdxfxf jlj
<−≤ −≤≤

αδ , 

…… 
)(||||)(max)( 0

2

)(01 xfdxfxf kkjkkljk <−≤ −≤≤+ αδ . 

 
As a result, ݔ௞ א  ,଴. Thus, by (c)ܮ
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By Lemma 1, Bk+1 also maintained positive definite. 

For the sake of simplicity, we have introduced the 
notation: 

 

)}(max)(
,)(0|max{)(

)(0 jkklji xfxf
klikikh

−≤≤
=

≤−≤=

 
 

Namely h(k) is a non-negative integer and satisfies 
the following two formulas: 
 

kkhklk ≤≤− )()( ,                                (7) 
 

)(max)(
)(0)( jkkljkh xfxf −≤≤

= .                                    (8) 

 
Thus, the nonmonotonic line search NLS (4) can be 

rewritten as: 
 

2
)(1 ||||)()( kkkhk dxfxf αδ−≤+ .                  (9) 
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Lemma 2: Under the conditions of assumption (H1), the 
sequence {f(xh(k))} decreases monotonically. 
Proof: By (9), knowledge of all k: 
 

)()( )(1 khk xfxf ≤+                              (10) 

 
have been established. 

Nonmonotonic line search NLS, 0≥l(k)≤l(k–1)+1, 
therefore: 

 

)(max

)(

)(0

)(

jkklj

kh

xf

xf

−≤≤
=

 

)(max
1)1(0 jkklj

xf −+−≤≤
≤  

)}(,)(maxmax{ 1)1(0 kjkklj
xfxf −−−≤≤

=  

)}(,)(max{ )1( kkh xfxf −=  

 
Then from (10), to give:  
 

)(

)}(,)(max{
)(

)1(

)1(

)(

−

−
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kh

kkh
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xf

xfxf
xf

 

 
Lemma 3: Assuming (H1) holds, then the limit 
lim௞՜∞ fሺxhሺkሻሻ  exists and 
 

0||||lim 1)(1)( =−−→∞ khkhk
dα                                 (11) 

 
Proof By (b) knowledge f(x) in the level set L0 on the 
lower bound, {xk}ؿ  ଴ (See the proof of Theorem 1)ܮ
and the sequence {f(xh(k))} monotonically decreasing, 
lim௞՜∞ fሺxhሺkሻሻ exist. From (9), there are 
 

2
1)(1)()1)(()( ||||)()( −−− −≤ khkhkhhkh dxfxf αδ  

On both sides so that k→ and notes δ>0, so 
0||||lim 2

1)(1)( =−−→∞ khkhk
dα  

namely formula (11). 
 
Lemma 4: Under the assumptions (H1), (H2) of the 
condition, lim௞՜∞ α୩ԡୢౡԡ ൌ 0ሻ. 
 
Proof Let ෠݄ሺ݇ሻ ൌ ݄ሺ݇ ൅ ܯ ൅ 2, First proved by 
mathematical induction, for any i≥1, the following 
holds: 
 

0||||lim
)(ˆ)(ˆ =
−−→∞ ikhikhk

dα                               (12) 

 
)(lim)(lim )()(ˆ khkikhk

xfxf
→∞−→∞

=                                (13) 

When I = 1, by ෠݄ definition, apparently  ൛ ෠݄ሺ݇ሻൟ ؿ
ሼ݄ሺ݇ሻሽ. Thus, by Lemma 3, lim

௞՜∞
݂ሺݔ௛෡ሺ௞ሻሻ exists and  

lim
௞՜∞

݂൫ݔ௛෡ሺ௞ሻ൯ ൌ  lim
௞՜∞

݂൫ݔ௛ሺ௞ሻ൯                                (14) 
By (11), known (12) was established. 
 

1)(ˆ1)(ˆ

)(ˆ

1)(ˆ)(ˆ

−−

−

=

=

−

khkh

kh

khkh

d

s

xx

α

 

This indicates that:  
 

0||||
1)(ˆ)(ˆ →−
−khkh

xx ( ∞→k ) 

and then by f(x) in L0  uniformly continuous, so: 
 

)(lim

)(lim

)(lim

)(

)(ˆ

1)(ˆ
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khk

khk

xf

xf

xf

∞→

∞→

−∞→

=

=
 

i.e., (13) established for i = 1: 
Now suppose for a given i, (12) and (13). From (9), 

there are 
 

2
1)(ˆ1)(ˆ)1)(ˆ()(ˆ ||||)()(
−−−−−−−

−≤
ikhikhikhhikh

dxfxf αδ , 

 
On both sides so that k→∞, by (13) and: 
 

)(lim)(lim )()1)(ˆ( khkikhhk
xfxf

→∞−−→∞
= , 

 
And notes δ>0, so: 
 

0||||lim
)1()(ˆ)1()(ˆ =

+−+−→∞ ikhikhk
dα .                   (15) 

 
This indicates that, for any i≥1, (12) was 

established. 
The (15) also implies: 
 

0||||
)1()(ˆ)(ˆ →−

+−− ikhikh
xx  ( ∞→k ), 

 
Due to f(x) in the level set L0 is uniformly 

continuous and thus 
 

)(lim

)(lim

)(lim

)(lim

)(

)(ˆ

)(ˆ
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This shows that, for any i≥1, (13) is also true. 
By definition of ෠݄ and (7) can be obtained: 

2
)2(

)(ˆ

++≤
++=

Mk
Mkh

kh

 
 
Namely: 
 

11)(ˆ +≤−− Mkkh                     (16) 

Thus, for any k, do deformation: 

1+kx ∑
−−

=
−+−

−−=
1)(ˆ

1
)(ˆ1)(ˆ)(ˆ )(

kkh

i
ikhikhkh

xxx  

∑
−−

=
−−

−=
1)(ˆ

1
)(ˆ)(ˆ)(ˆ

kkh

i
ikhikhkh

dx α ．                  (17) 

 
On where ݔ௛෡ሺ௞ሻ transposition and notes (16), was: 
 

||||

||||
1)(ˆ

1
)(ˆ)(ˆ

)(ˆ1

∑
−−

=
−−

+

−=

−

kkh

i
ikhikh
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d

xx
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||||
1

1
)(ˆ)(ˆ∑

+

=
−−

≤
M

i
ikhikh

dα                            (18) 

 
On both sides so that k→∞, by (12): 
 

0||||lim
)(ˆ1 =−+→∞ khkk

xx . 

 
Then and then by f(x) consistent continuity: 
 

)(lim)(lim
)(ˆ khkkk

xfxf
∞→∞→

=  

 
By (14), we can see: 
 

)(lim)(lim )(khkkk
xfxf

→∞→∞
=                                 (19) 

 
Nine On both sides of order k→∞, by (19) and noted 
that δ>0, Lemma 4 holds. 
 
Remark: If (4) becomes a monotonous line search 
conditions, can obviously be seen f(xk) is monotonically 
decreasing, if )(xf  lower bound, easy to get 
∑ ௞ߙ

ଶ∞
௞ୀଵ ԡ݀௞ԡଶ ൏ ൅∞, in particular, have Lemma 4. 

Here the weak non-monotonic search, to prove Lemma 
4 fee to a lot of twists and turns. 
 
Lemma 5: Under the assumptions (H1), (H2) of the 

condition, ௬ೖ
೅ௌೖ

ௌೖ
೅ௌೖ

൒ ܿଵ  and ԡ௬ೖԡమ

ௌೖ
೅ௌೖ

൑ ௖మ
మ

஼భ
  established. 

Among them, 01 >c  with (H2), as defined in C2>0 a 
constant. 
 
Proof: Prove modeled in Sun and Yuan (2006), Lemma 
5.3.2. 
 
Lemma 6: Set up kB  BFGS formula (3) obtained, 0B  is 
symmetric positive definite. If the presence of a positive 
constant number m, M Such that for any k≥0,  yk and  

ܵ௞ meet ௬ೖ
೅ௌೖ

ௌೖ
೅ௌೖ

൒ ݉ and ԡ௬ೖԡమ

ௌೖ
೅ௌೖ

൑  Then for any .ܯ

)1,0(∈p , The presence of a positive constant number 
β1, β2, β3 make any k≥0 inequality: 
 

21 ||||
|||| ββ ≤≤

i

ii

s
sB  

and 
 

321 ||||
ββ ≤≤

i

ii
T
i

s
sBs , 

 
the iא ሼ0, 1, 2, … , ݇ሽ at least [pk] indicators established. 
[x] is not less than x  the smallest integer. 
 
Theorem 2: Under the assumptions (H1), (H2) of the 
condition, for Algorithm 1, or the existence of k, making 
the 
 

0=kg  
 
Or 
 

0inflim =
→∞ kk

g . 

 
Proof: Use reduction ad absurdum. Assume that the 
conclusion is not established, there is a constant ߝ ൐ 0, 
such that for any k≥0, there is: 
 

ε≥kg                (20) 
 

Lemma 5: Shows that the algorithm is in line with the 
conditions of Lemma 6. Thus, for any ݌ א ሺ0, 1ሻ, the 
presence of a positive constant number β1, β2, β3 make 
any k≥0 , the inequality: 
 

|||||||||||| 21 iiii ssBs ββ ≤≤  
 

and 
 

2
3

2
1 |||||||| iii

T
ii ssBss ββ ≤≤  

 
To i = א ሼ0, 1, 2, … , ݇ሽ at least [pk] indicators 
established. Noted that Si = αidi equations, can be 
written as: 
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|||||||||||| 21 iiii ddBd ββ ≤≤  
 

and 
 

2
3

2
1 |||||||| iii

T
ii ddBdd ββ ≤≤  

 
by (5), two equations that 
 

|||||||||||| 21 iii dgd ββ ≤≤  
 
and 
 

2
3

2
1 |||||||| ii

T
ii dgdd ββ ≤−≤  

 
Based on the above discussion, we define the index 

set Jt and J are as follows (out of habit , in the above 
formula , the subscript i replaced by k) :  
 

}||||||||

|||||||||||||{
2

3
2

1

21

kk
T
kk

kkkt

dgdd

dgdtkJ

ββ

ββ

≤−≤

≤≤≤=  

And 
 

U
∞

=

=
1t

tJJ  

 
We can put it another way, there is a positive 

constant number β1, β2, β3  and infinite indicators set J, 
such that for any kא  to meet ,ܬ
 

|||||||||||| 21 kkk dgd ββ ≤≤                                  (21) 
 

2
3

2
1 |||||||| kk

T
kk dgdd ββ ≤−≤                 (22) 

 
Nonmonotonic line search NLS (4), for any kא  ,ܬ

there is 
 

22

)(0
)()(max

)(

k
k

jkklj

kk
k

dxf

dxf

β
αδ

β
α

−>

+

−≤≤  
22)()( k

k
k dxf

β
αδ−≥ ,                                (23) 

 
)( kxf  f(xk) transpose, 

 
22)()()( k

k
k

kk
k dxfdxf

β
αδ

β
α

−>−+ ,                  (24) 

 
the use of the upper - left of the mean value theorem 
and finishing, 
 

2)()( k
k

k
T

k ddug
β
αδ−≥ ,                               (25) 

where  ݑ௞ୀ ௫ೖ

ఠೖഀೖ೏ೖ
ఉ

߱௞ א ሺ0, 1ሻ, ݇ א  .ܬ
Notice ሼݔ௞ሽ ؿ   ଴ܮ ,଴ (See the proof of Theorem 1)ܮ

bounded, i.e. {xk} also bounded. Therefore, you can 
always find a convergent subsequence  {xk׀kא J′ሽ ك
ሼx୩|k א Jሽ ك ሼx୩ሽ. For subseries ሼx୩|k א J′ሽ, the 
corresponding sequence ሼd୩|k א J′ሽ, may be constructed 
according to algorithm. Impossible in sequence ሼx୩|k א
J′ሽ, found an infinite number of points makes ║dk║ = 0, 
otherwise known from (21), (20) contradictions and 
assumptions. So, can find a convergent subsequence 
ቄ ௗೖ

ԡௗೖԡ
|݇ א ′′ܬ ك J′ቅ. In this way, we find convergent 

subsequence {xk׀kא J′′ሽ ك ሼx୩|k א Jሽ, so that at the same 
time meet the: 
 

xxkJkk
ˆlim

,
=

′′∈∞→
,                                             (26) 

 

d
d
d

k

k

Jkk
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Lemma 4 and (26), we obtain lim
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by (28), (27) and Lemma 4: 
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The following inequality (22) on the left to take the 

same means, so ݇ א   ,║and divide both sides by ║dk ′′ܬ
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let k→∞, by the continuity of g, (26), (27) and (29) can 
be obtained lim

௞՜∞,௞א௃′′
 ║d୩║ ൌ 0. Then from (21), 

lim
௞՜∞,௞א௃′′

 ║g୩║ ൌ 0 contradiction of this hypothesis (20). 
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Table 1: Results of number of numerical experiments to space 
limitations 

Test 
Rosenbrock 
------------------------------ 

Penalty
---------------------------

M ni nf ni nf

0 562 1195 83 174
1 238 538 49 327
2 257 806 196 507
3 411 1089 196 723
4 333 896 115 519
5 442 1721 196 833
6 606 1566 196 104
7 659 1663 27 41
 

CONCLUSION 
 
The author of this study, a number of numerical 

experiments to space limitations. The procedures 
Matlab6.5 been prepared on a normal PC, taken as 
parameters unified σ = 1, β = 0.2, δ = 0.9,  ε = 10-6 . We 
calculated for different values of M, ni represents the 
number of iterations, nf represents the number of 
calculations of the function value calculation times, 
gradient. Results from the numerical point of view, the 
proposed line search method has the following 
advantages (Table 1): 
 
• When the correct initial testing step according to 

the formula of this study, is usually better than the 
initial test step is fixed 

• For non-monotone line search method, the number 
of iterations, the function value calculation times 
are reduced 

• The Nonmonotone strategy is effective for most 
functions, especially in the case of the high-
dimensional, or initial test step length is fixed 
(Table 1). 
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