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Abstract: This study presents an improved genetic algorithm. The algorithm introduced acceleration operator in the 
traditional genetic algorithm, effectively reducing the computational complexity. The search speed of the algorithm 
has been greatly improved, so that it can quickly find the global optimal solution. The accelerating collaborative 
operator lessons from the thoughts of binary search algorithm combining with the variable step length strategy. The 
accelerating operator has strong local search ability and crossover and mutation operators have strong global search 
ability, then combining these operators generates a new Genetic algorithm. The tests on the different functions show 
that the improved algorithm has the advantages of faster convergence and higher stability in the case of a small 
population than traditional genetic algorithm and can effectively avoid the premature phenomenon. 
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INTRODUCTION 

 
As a bionic algorithm in the macro sense. Genetic 

Algorithm (GA) inspires a good structure by simulating 
the Darwinian “survival of the fittest, survival of the 
fittest” principle. It maintains the existing structure and 
looks for a better structure by simulating Mendelian 
theory of the genetic variation in the iterative process. 
The classical genetic algorithm solving steps are 
initialize population, choice, cross, variation and the 
judge of the termination condition. The genetic 
algorithm provides a common framework of solving 
traditional optimization problems. Because it does not 
depend on the specific problem areas and has good 
robustness, it is widely used in many disciplines.With 
further research, the genetic algorithm also showed 
many deficiencies, such as premature convergence, 
easy to fall into local optimum, the slow search speed 
and strong dependence on the initial population. 
Because of it’s insufficient and inspire of the imitation 
of human intelligence (HSIC), People have been 
proposed many improvements algorithm and the new 
intelligent algorithms, such as the parallel genetic 
algorithm based on fixed-point theory (Chen et al., 
2010), adaptive genetic algorithm, super-selection 
strategy genetic algorithm, chaos genetic algorithm, ant 
colony algorithm, PSO algorithm, simulated annealing 
algorithm, immune algorithm (Gong et al., 2008) co-

evolutionary algorithm and so on. This study introduced 
the acceleration operator in the traditional genetic 
algorithm to enable search efficiency to be greatly 
improved and to enable the global optimum to be 
quickly found. 

 
GENETIC ALGORITHM WITH ACCELERATE 

OPERATOR 
 

This algorithm uses a binary encoding, random 
initialization population and the elite retention policy. 
The acceleration operator is applied to each individual. 
All genes of all individuals in the population are 
executed crossover and mutation. When the end 
conditions are satisfied, genetic manipulation ends, or 
go into the next generation. 
 
Population initialization: 
Binary encoding and decoding: To transformer the 
variable value into the corresponding binary string. 

Set x = [x1,x2,…,xn]TεRn to be decision-making 
variable, set  u = [u1,u2,…,un]T to be the upper bound of 
the decision-making variable, set  d = [d1,d2,…dn]T  to 
be the lower bound of the decision-making variable, set  
p = [p1,p2,…,pn]T to be the accuracy of the decision-
making variable, set l = [l1,l2,…,ln]T  to be the length of 
the binary string with corresponding to decision-making 
variable. The formula is as follows: 
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Here, i  {1, 2,.., n}.Use o = [o1, o2,…, on]T as the 

lower bound of the binary string with corresponding to 
decision-making variable, },,2,1{,0 nioi L∈= . Use ub 
[ub

1, ub
2,…, ub

n]T
 as the upper bound of the binary string 

with corresponding to decision-making variable, 
},,2,1{,2 niu ilb

i L∈= . Use c = [c1, c2,.., cn]T
 as the 

gene with corresponding to decision-making variable. 
The binary string in the machine is expressed as 
unsigned integer number that itself is a binary string. 
The decoding formula is as follows: 

 
*( ) / , {1,2, , }b

i i i i i ix d c u d u i n= + − ∈ L                              (2) 
 

The initialization of the population has a variety of 
methods, such as random initialization, uniform 
initialization and orthogonal initialization. In order to 
show the superiority of the introduction of the 
acceleration operator, the study selected randomly 
initialized population. Another advantage of using 
random initialization is that the number of variables can 
be arbitrarily changed, which brings the convenience in 
the program tests. This population size is set to 50. 
 
Acceleration operator:  
Seek to the initial exploration step length: Use vector 
sb[sb

1, sb
2,..,sb

n]Tto express the exploration step length of 
each dimension binary string. Assume b

is  is as follows: 
 

/ ; {1,2, , }b
i is U c i n= ∈ L                               (3) 

 
Here, c is an appropriate constant. In this study, c = 10. 
Use   s = [s1,s2,…,sn]T    to express the step length of the 
corresponding variable after decoding. The calculate 
formula is shown as follows: 

 
( )/ ; {1,2, , }i i is u d c i n= − ∈ L                 (4) 

 
The description of using variable was carried out as 

follows. It’s just a difference of a decoder compared 
with the binary description. 

 
Variable step size strategy: An individual in the 
population is equivalent to a point in the solution space. 
It can be expressed as the vector a = [a1,a2,…,an]T. 
Select the dimension i, T

1 2 1 1[ , , , , , , , ]i
i i i i na a a a a s a a− += +L L , 

fix the other dimension. Also set up a counter times to 
record number of times of that the fitness value of the 
point ai is continuously smaller than the fitness value of 
the point a. Then determine the next step length 

according to the current fitness value of a and ai and 
times. The formula for calculating step length is shown 
as follows: 

Sub-histogram after FCM. Therefore we define two 
weights according to the information. One, W1, is the 
ratio of the intensity distribution of each cluster and the 
whole image. The other one, W2, is the ratio of the pixel 
number of each cluster and the whole image. And the 
total weight, Weight, is composed of W1 and W2 and the 
intensity distribution owns more weight than the pixel 
number. So we can calculate the weights according to 
the followings: 
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              (5) 

 
Here, f indicates the fitness function. What is 

calculated in the study is the minimum. The 
corresponding changes are necessary when calculating 
the maximum. 
 
Steps of the acceleration operator: With having the 
above initial step length and the calculating formula of 
the variable step length, we first give the search 
operator in the i-th dimension before specific steps of 
the acceleration operator are given. 
 
Operator 1: 
The first step: to calculate T

1 2 1 1[ , , , , , , , ]i
i i i i na a a a a s a a− += +L L  

according to step  s = [s1, s2,…, sn]T, given point  a = 
[a1,a2,…,an]T

  and the selected i-th dimension. 
 
The second step: If f(ai)<f(a), a = ai, then according to 
(5) determine the step length of the new i-th dimension 
step length si, T

1 2 1 1[ , , , , , , , ]i
i i i i na a a a a s a a− += +L L . 

 
The third step: If si = 0 then end, otherwise turn to the 
second. 

With having the operator 1, we can give the 
concrete steps of the acceleration operator as follow:  
 
The first step: To determine the initial step length s = 
[s1, s2,…, sn]T

  and starting point a = [a1, a2,…, an]T, take 
i = 1. 
 
The second step: To apply operator 1 to the i-th 
dimension. 
 
The third step: If i>n then end, otherwise i = i+1, turn 
to the second step. 
 
Crossover: There are many the binary crossing ways, 
such as a single-point crossover, multi-point crossover, 
uniform crossover, multi-point orthogonal crossover, 
ectopic crossover (Zhong et al., 2003), multi-agent 
crossover (Pan and Wang, 1999) and so on. The ectopic 
crossover  among  them  will change the original model 
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Fig. 1: Algorithm process of genetic algorithm with 

acceleration operator 
 
space, while others will not change the original model 
space. The study has taken single-point random 
crossover manner. The crossover point is randomly 
generated. Because of the efficiency of the acceleration 
operator, after the applying the acceleration operator to 
an individual, one local extremum will be searched. If 
the acceleration operator is applied to the individual 
once again, the same local extremum will still be 
searched. Therefore, this individual does not have much 
conservation value. Therefore, this study used a simple 
single-point crossover. All individuals were carried out 
the crossover. By means of using the offspring 
individual to replace the parent individual, the global 
search capability was improved as much as possible. 

Here is a concrete example, consider the following 
11-bit string length parent individuals. 

 
Parent individual 1:  0 1 1 1 0 0 1 1 0 1 0 
Parent individual 2:  1 0 1 0 1 1 0 0 1 0 1 

 
Assuming crossover point position randomly 

generated to be 5, after the crossover two offspring 
individuals were generated as follow: 

 
Offspring individual 1:   0 1 1 1 0 0 0 0 1 0 1 
Offspring individual 2:   1 0 1 0 1 1 1 1 0 1 0 

 
Mutation: The most basic operation of the binary 
mutation is to change loci. On this basis, then according 
to different factors, loci were carried out the mutation 
so as to  have  the  different  mutation algorithms (Liu 
et al., 2003). The study used the basic mutation. 
According to a certain mutation rate, mutation position 
was randomly produced. The bit is inverted. Consider 
the following 11-bit string length parent individuals: 

 
Parent individual 1: 0 1 1 1 0 0 1 1 0 1 0 
 
Assuming crossover point position randomly 

generated to be 3, the new offspring individual was 
generated after the mutation: 

 
Offspring individual 1:   0 1 1 1 0 0 1 1 1 1 0 

 
Genetic algorithm steps with acceleration operator: 
The first step: To initialize population. 

The second step: To apply the acceleration operator to 
the individuals in the population. Put the best individual 
searched into a single document. If the closing 
conditions is met, the iteration ends, otherwise turn to 
the third step. 
 
The third step: Crossover. 
 
The fourth step: Mutation. 
The algorithm process was shown in Fig. 1. 
 

SIMULATION TEST RESULT ANALYSIS 
 

For the genetic algorithm introduced the 
acceleration operator, we applied random initialization 
and taken the population size to be 50, 50 individuals 
were carried out random single-point crossover and 
random single-point mutation, the document storages 
the optimal individual. For the traditional genetic 
algorithm, we applied random initialization and taken 
the population size to be 200, 200 individuals were 
carried out random single-point crossover with having 
the crossover rate of 25% and random single-point 
mutation with having the mutation rate of 5%, the 
championship selection, the document storages the 
optimal individual. Below are test results of the six 
categories of the benchmark test function. The number 
of variables is 3. 
 
The test of the first type test function: The first type 
test function:  
 

∑
=

−=
3

1

2
1 450)(

i
ixxf , ]100,100[−∈ix   

 
the optimal point  x = (0,0,0)T, the optimal value is -
450. The new algorithm run10 generations with taking 
92 ms. While the traditional algorithm run 100 
generations with taking 2498 ms. Set n to be the 
number of generations. Set OVS to be optimal value 
searched. The results of two algorithms were shown in 
Table 1. The test results showed that the new algorithm 
found the global optimal value in the third generation, 
while traditional algorithm found the global optimal 
value in the forty generation. 
 
The test of the second type test function: The second 
type test function: 
 

450}31|,{|max)(2 −≤≤= ixxf ii
, ]100,100[−∈ix  

 
the optimal point  x = (0,0,0)T, the optimal value is -
450. The new algorithm run 20 generations with taking 
156 ms. While the traditional algorithm run100 
generations with taking 2403 ms. The results of two 
algorithms were shown in Table 2. 

The test results showed that the new algorithm 
found the global optimal value in the eighteenth 
generation, while traditional algorithm found the global 
optimal value in the ninety generation. 
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Table 1: Test results of the first type test function 
New algorithm 
----------------------------------------------------------------------------------- 

Traditional algorithm 
--------------------------------------------------------------------------------------

n x1 x2 x3 OVS n x1 x2 x3 OVS 
1 0 1.7578 0.00019 -446.9099 10 3.10379 14.7971 0.06679 -221.413697 
2 01953 0.0488 0 -446.9601 20 0 1.95309 0 -446.18538 
3 0 0 0 -450.0000 30 0 1.75779 0.00019 -449.08681 
4 0 0 0 -450.0000 40 0 0.19531 0 -449.96189 
5 0 0 0 -450.0000 50 0 0.04859 0 -449.99761 
6 0 0 0 -450.0000 60 0 0.03659 0.00320 -449.99869 
7 0 0 0 -450.0000 70 0 0.03659 0.00320 -449.99869 
8 0 0 0 -450.0000 80 0 0.03659 0.00320 -449.99869 
9 0 0 0 -450.0000 90 0 0.03659 0.00320 -449.99869 
10 0 0 0 -450.0000 100 0 0.03359 0 -449.99891 
 
Table 2: Test results of the second type test function 
New algorithm 
----------------------------------------------------------------------------------- 

Traditional algorithm 
-------------------------------------------------------------------------------------

n  x1 x2 x3 OVS n x1 x2 x3 OVS 
2 -1.80029 1.60391 -0.1995 -448.1998 10 0 2.7339 0 -447.26559 
4 -1.80029 1.60391 -0.1995 -448.1998 20 0 2.34371 0 -447. 65628 
6 -1.80029 1.60391 -0.1995 -448.1998 30 0 0.78128 0.00609 -449.21869 
8 -1.80029 1.60391 -0.1995 -448.1998 40 0.08109 0.19529 0.00609 -449.80471 
10 -0.92918 -0.7129 -0.5693 -449.0709 50 0.08109 0.19529 0.00609 -449.80471 
12 -0.92918 -0.7129 -0.5693 -449.0709 60 0.02457 0.19529 0.00609 -449.80471 
14 -0.92918 -0.7129 -0.5693 -449.0709 70 0.02521 0.15682 0.01831 -449.84319 
16 -0.92918 -0.7129 -0.5693 -449.0709 80 0.02439 0.12208 0.01831 -449.87789 
18  0.0002  0  0+3 -449.9999 90 0.00189 0.02248 0.00609 -449.97751 
20  0.0002  0  0+3 -449.9999 100 0.00081 0.01029 0 -449.98981 
 
Table 3: Test results of the third type test function 
New algorithm 
---------------------------------------------------------------------------------- 

Traditional algorithm 
----------------------------------------------------------------------------------- 

n  x1 x2 x3 OVS n x1 x2 x3 OVS 
3 -0.999 -1.000 -1.000 391.9985 10 1.56171 7.17769 65.33199 734.36851 
6 -1.000 -0.999 -1.000 391.9983 20 2.01719 7.19999 65.34331 607.94668 
9 -0.994 -1.000 -1.000 391.9883 30 2.01719 7.19999 65.34331 607.94668 
12 -0.994 -1.000 -1.000 391.9883 40 2.01719 7.19999 65.34331 607.94668 
15 -0.994 -1.000 -1.000 391.9883 50 2.01719 7.19598 65.34309 597.31498 
18 -0.994 -1.000 -1.000 391.9883 60 2.01951 7.06811 64.16021 554.57039 
21 -0.994 -1.000 -1.000 391.9883 70 2.01951 7.15339 65.33199 540.30489 
24  0.003  0.0024  0.0048 390.0012 80 1.97068 7.12892 65.33199 499.56871 
27  0.003  0.0024  0.0048 390.0012 90 1.97068 7.13808 65.33199 493.09489 
30  0.003  0.0024  0.0048 390.0012 100 1.95849 7.15329 65.33199 483.01942 
 
Table 4: Test results of the fourth type test function 
New algorithm 
------------------------------------------------------------------------------------ 

Traditional algorithm 
-------------------------------------------------------------------------------------

c x1 x2 x3 OVS n x1 x2 x3 OVS 
1 0.99 0.9949 1.0322 -326.7360 1 0.04999 1.0099 0.16011 -323.79561 
2 0 0.0024 1.0054 -328.9823 5 0.00951 1.05219 0.97499 -327.26818 
3 0 0 0 -330 10 0.02081 1.00591 0.97661 -327.83389 
4 0 0 0 -330 20 0 0 0.97661 -328.93838 
5 0 0 0 -330 30 0 0 0.97661 -328.93838 
6 0 0 0 -330 45 0 0 0.97661 -328.93838 
7 0 0 0 -330 55 0 0 0.97661 -328.93838 
8 0 0 0 -330 70 0.00021 0 1.00679 -328.97721 
9 0 0 0 -330 85 0 0 0.99760 -329.00369 
10 0 0 0 -330 100 0.00059 0.00151 0.99619 -329.00418 
 
The test of the third type test function: The third type 
test function: 
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the optimal point x = (0,0,0)T, the optimal value is 390. 

The new algorithm run 30 generations with taking 

246 ms. While the traditional algorithm run100 
generations with taking 2545 ms. The results of two 
algorithms were shown in Table 3. The test results 
showed that the new algorithm found the global optimal 
value in the twenty-fourth generation, while the search 
results of the traditional algorithm were still quite far 
away from the global optimal solution and had fallen 
into a local optimum. 
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Table 5: Test results of the fifth type test function 
New algorithm 
----------------------------------------------------------------------------- 

Traditional algorithm 
--------------------------------------------------------------------------------------- 

n  x1  x2 x3 OVS n x1 x2 x3 OVS 
1  0.002  0.0001 10.8665 -179.970 1 310.05 315.6 304.7999 -107.40389 
2 -6.270  4.4272 -5.4332 -179.978 10 134.84 187.5 403.2351 -124.27819 
3 -6.270  4.4272 -5.4332 -179.978 25 12.887 0.149 304.1439 -156.72501 
4 -6.270  4.4272 -5.4332 -179.978 40 14.063 0 4.394498 -178.88438 
5 -6.270  4.4272 -5.4332 -179.978 50 12.360 4.688 4.504401 -178.98741 
6 -6.270  4.4272 -5.4332 -179.978 60 18.749 0 11.42558 -179.82608 
7 -6.270  4.4272 -5.4332 -179.978 70 12.451 0 10.83981 -179.92488 
8 -3.135  0 -5.4332 -179.990 80 12.579 0.042 10.83958 -179.93021 
9  0 -0.0001 -5.0002 -180 90 12.579 0 10.83979 -179.93068 
10  0 -0.0001 -5.0002 -180 100 12.561 0.0023 10.83971 -179.93089 
 
Table 6: Test results of the sixth type test function 
New algorithm 
-------------------------------------------------------------------------------- 

Traditional algorithm 
------------------------------------------------------------------------------------ 

n x1 x2 x3 OVS n x1 x2 x3 OVS 
1 -0.9905 0.0001 0.0001 -137.83689 10 0.0627 0.8750 2.0780 -133.64539 
2 -0.0002 0.0001 0 -139.99951 20 0.0469 0.1875 0.1875 -138.44489 
3 -0.0002 0.0001 0 -139.99951 30 0.0469 0.1875 0.1875 -138.44489 
4 -0.0002 0.0001 0 -139.99951 40 0 0.1836 0.0938 -138.91868 
5 -0.0002 0.0001 0 -139.99951 50 0 0.1875 0.0625 -138.98771 
6 -0.0002 0.0001 0 -139.99951 60 0 0.1757 0.0312 -139.12238 
7 -0.0002 0.0001 0 -139.99951 70 0 0.0586 0.0312 -139.77029 
8 -0.0002 0.0001 0 -139.99951 80 0.0078 0.0428 0.031 -139.82671 
9 -0.0002 0.0001 0 -139.99951 90 0 0.0428 0.0154 -139.85868 
10 -0.0002 0.0001 0 -139.99951 100 0 0.0352 0.0073 -139.89422 
 
The test of the fourth type test function: The fourth 
type test function: 
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the optimal point x = (0,0,0)T, the optimal value is -330. 

The new algorithm run 10 generations with taking 
118 ms. While the traditional algorithm run100 
generations with taking 2498ms. The results of two 
algorithms were shown in Table 4.  

The test results showed that the new algorithm 
found the global optimal value in the third generation, 
while the traditional algorithm did not still find the 
global optimal value in the hundredth generation.  
 
The test of the fifth type test function: The fifth type 
test function: 
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the optimal point  x = (0,0,0)T, the optimal value is -
180. The new algorithm run 10 generations with taking 
102 ms. While the traditional algorithm run100 
generations with taking 3025 ms. The results of two 
algorithms were shown in Table 5. The test results 
showed that the new algorithm found the global optimal 
value in the ninth generation, while the traditional 
algorithm felled into a local optimum and could not 
come out. 

The test of the fourth type test function: The sixth 
type test function:  
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the optimal point x = (0,0,0)T, the optimal value is -140. 
The new algorithm run 10 generations with taking 100 
ms. While the traditional algorithm run100 generations 
with taking 1384 ms. The results of two algorithms 
were shown in Table 6.  

The test results showed that the new algorithm 
found the global optimal value in the second 
generation, while the traditional algorithm found the 
global optimal value in the seventieth generation. 

 
CONCLUSION 

 
The test results showed that the new algorithm had 

successfully passed the test of six types of the test 
functions. From the running time and the running 
results, the new algorithm is superior to the traditional 
algorithm. The main characteristics of the genetic 
algorithm introduced the acceleration operator are as 
follows:  

 
• The small population 
• The global search is separated from the local 

search, the crossover and mutation only need to 
search the local area of containing global optimal 
solution. The optimal solution in the local area is 
completed by the acceleration operator 
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• The search speed is fast, the search efficiency is 
high  
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