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Abstract: Fatigue is one of the most significant failure modes for marine structures such as ships and offshore 
platforms. Among numerous methods for fatigue life estimation, spectral method is considered as the most reliable 
one due to its ability to cater different sea states as well as their probabilities of occurrence. However, spectral based 
simulation procedure itself is quite complex and numerically intensive owing to various critical technical details. 
Present research study is focused on the application and automation of spectral based fatigue analysis procedure for 
ship structure using ANSYS software with 3D liner sea keeping code AQWA. Ansys Parametric Design Language 
(APDL) macros are created and subsequently implemented to automate the workflow of simulation process by 
reducing the time spent on non-value added repetitive activity. A MATLAB program based on direct calculation 
procedure of spectral fatigue is developed to calculate total fatigue damage. The automation procedure is employed 
to predict the fatigue life of a ship structural detail using wave scatter data of North Atlantic and Worldwide trade. 
The current work will provide a system for efficient implementation of stochastic spectral fatigue analysis procedure 
for ship structures. 
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INTRODUCTION 

 
Ships are prone to fatigue due to high cyclic loads 

predominantly caused by waves and varying loading 
conditions (Fricke et al., 2011). Fatigue strength 
evaluation is an important criterion in ship design as 
accurate prediction of the fatigue life under service 
loading is imperative for both safe and economic design 
and operation (Cui et al., 2011). The fatigue strength of 
ship structure is generally assessed either by simplified 
method or spectral based Method. These techniques are 
categorized based on the method used for determination 
of stress distribution (Bai, 2003). Excessive sensitivity 
of the estimated fatigue damage to the weibull shape 
parameter and selection of basic design SN curve, 
confine the use of simplified approach to complex 
structures and novel hull forms (ABS, 2003). On the 
contrary, spectral method is considered as the most 
reliable method for fatigue life estimation of ship 
structure due to its ability to cater different sea states as 
well as their probabilities of occurrence (Wang, 2010). 
It is a direct calculation method based on linear theory 
in the frequency domain of a stationary and ergodic but 
not necessarily narrow banded Gaussian random 
process with zero mean (Kukkanen and Mikkola, 
2004). 

Full stochastic spectral fatigue calculations are 
based on complex stress transfer functions established 

through direct wave load analysis combined with stress 
response analysis. In full stochastic analysis, 
hydrodynamic loads are directly transferred from the 
wave load analysis program to Global FE model. 
Wirsching and Chen (1988), Sarkani et al. (1990), 
Pittaluga et al. (1991) and Wang (2010) have presented 
in detail the theoretical background and method of 
spectral based fatigue analysis. Chun-Bo et al. (2012) 
investigated the fatigue strength of trimaran cross deck 
structure by spectral approach. Shehzad et al. (2012) 
applied spectral method to estimate fatigue life of 
selected critical details of trimaran structure. In spectral 
approach, wave loads in regular waves Or Response 
Amplitude Operators (RAOs) and corresponding wave 
induced stresses in ship structural components are 
computed for a specific range of frequencies and 
headings to obtain stress transfer functions at the hot 
spots. Each transfer function is valid for a specified ship 
velocity, wave heading angle and loading condition. 
Wave data in terms of a wave scatter diagram and a 
wave energy spectrum are incorporated to generate 
stress-range response spectra, which is used to define 
the magnitude and frequency of occurrence of local 
stress ranges at hot spots in a probabilistic manner. 
Fatigue damage from individual sea state is calculated 
using Rayleigh's probability density function describing 
the short-term stress range distribution, spectral 
moments of various orders and S-N curve
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Table 1: Wave load RAOs calculation parameters 
S. no Parameter Range Increment 
1 Frequency ω 0.2 ~ 2.0 0.1 
2 Heading angle θ 00 ~ 3300 300

3 Heading probability pj 1/12 - 
 
result in 228 AQWA pressure files for 01 base vessel 
loading condition. However, reading AQWA pressure 
file in ANSYS to apply loads on structure is a tedious, 
laborious and time consuming task, as it requires prior 
deletion of line mesh from global structure model so as 
to remove beam elements and remeshing afterwards. 
Consequently, manual implementation of pressure loads 
on structure model to perform FE analysis is not a 
feasible and time efficient solution. 

An automatic pressure loading technique was 
developed utilizing APDL based subroutine ALSFG 
(Automatic Load Step File Generator). ALSFG macro 
working include removal of line mesh,  systematically 
reading of AQWA pressure files, conversion to 
corresponding ANSYS load step files and finally 
remeshing of the lines to generate beam elements. 
These load step files can be used directly in ANSYS to 
perform quasi static FE analysis. This pressure loading 
approach turns out to be a useful tool as it greatly 
enhances the study efficiency. 
 
Boundary condition and solution: Application of 
proper displacement boundary condition in quasi-static 
FE analysis to constrain rigid body motion is a 
challenging task. Spring supports are generally used to 
restrain relevant degrees of freedom of the structure to 
ensure non singularity of structural stiffness matrix. 
However, proper selection of spring stiffness constant is 
vital in order to keep corresponding spring force to be 
small enough to obtain valid results.  

In this study, Inertia relief method in ANSYS is 
used to solve the problem of displacement boundary 
condition. It is a latest technique, which perform inertia 
relief calculations, compute and apply equivalent 
accelerations that counterbalance the applied loads. An 
APDL macro IRBCS (Inertia Relief Boundary 
Condition and Solution) is developed that apply inertia 
relief boundary condition and solve all load step files 
generated in previous step.  
 
Stress extraction and stress transfer function: The 
hot spot stress based fatigue design is based on the 
stresses at a weld toe obtained by a linear or quadratic 
extrapolation of stresses over 2 or 3 points in front of 
the weld toe under consideration (Kim et al., 2009). Hot 
spot stress or geometric stress includes all stress-rising 
effects induced by the structural detail but excluding all 
stress concentrations due to the weld profile itself. 
Extraction of hot spot stress and formulation of stress 
transfer function, which represents the relationship 
between the stress at a particular structural location, 
wave frequency and heading, is the key step in spectral 

fatigue analysis. This tedious cumbersome job of hot 
spot stress extraction and generation of transfer 
function is automated using APDL macro “HSSTFG” 
(Hot Spot Stress Transfer Function Generator”. 
HSSTFG macro working is based upon the hot spot 
stress extraction methodology of DNV classification 
notes for fatigue assessment of ship structure (DNV, 
2010). It derives hot spot stress for each load case by 
linear extrapolation over reference points 0.5 and 1.5 x 
plate thickness away from the hot spot and saves the 
final stress value at appropriate location in the matrix to 
generate stress transfer function. 
 
Fatigue damage calculation: Mathematically, 
spectral-based fatigue analysis begins after the 
determination of the stress transfer function. Wave 
energy distribution Sη in short term sea state over 
various frequencies, is modeled by parametric Pierson-
Moskowitz wave energy spectrum (DNV, 2010) and 
expressed as: 
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where,  
Hs  =  Significant wave height  
Tz  =  Zero crossing period 
ω =  Wave frequency 
 

Stress energy spectrum Sσ is obtained by scaling 
Pierson-Moskowitz wave energy spectrum in the 
following manner. 
 

ܵఙሺ߱|ܪ௦, ௭ܶ, ሻߠ ൌ ,௦ܪ|ሻ|ଶ.  ܵఎሺ߱ߠ|ఙ ሺ߱ܪ|  ௭ܶሻ    (2) 
 
where, Hσ (ω/θ) is the stress transfer function and θ is 
the heading angle. The nth spectral moment mn of the 
stress response process for a given heading is calculated 
as follows: 
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Assuming the short-term stress response to be 

narrow-banded, then stress ranges follow the Rayleigh 
probability distribution (ABS, 2004). Using spectral 
moments of various orders, Rayleigh probability 
density function g(s) describing the short term stress-
range distribution and zero up-crossing frequency of the 
stress response f are calculated as follows: 
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Fig. 2: Automation procedure of stochastic spectral fatigue analysis 
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where,  
s  = Stress range  
m0, m2  = Spectral moments 
 

Using SN curve of the form N=ASm, the short term 
fatigue damage Dij incurred in the ith sea-state is given 
by the relation: 
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஺
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where,  f0ij is zero-up crossing frequency of stress 
response in Hz, T is design life in sec, m and A are 
constants of SN curve and pi is the probability of 
occurrence of individual sea state. Substituting the 

value of g(s) from Eq. (4) and after mathematical 
manipulations, above equation takes the form as: 
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where, ߁ represents gamma function. Based on 
Palmgren Miner rule, the total or cumulative fatigue 
damage D is calculated by the linear summation of the 
damage in individual sea state and is expressed as: 
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where,  
Nload =  Total number of loading conditions considered  
pn  =  Fraction of design life in loading condition n 
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Fig. 5: North Atlantic (NA) sea scatters data 
 

 
 
Fig. 6: Worldwide trade (WWT) sea scatter data 
 

 
 
Fig. 7: Fatigue damage for NA and WWT sea scatter 

diagrams 

corresponds to the non-operational time of the ship at 
harbor. 

 
RESULTS AND DISCUSSION 

 
The result of fatigue damage calculation for 

various scatter diagrams and effect of Wirsching’s rain 
flow correction factor on computed fatigue life is 
shown in Fig. 7. Predicted fatigue damage using WWT 
scatter diagram is lower than the North Atlantic scatter 
diagram. This is in accordance with the established fact 
of North Atlantic as the severest condition for fatigue 
damage calculation. 

Also, an increase in predicted fatigue life is 
observed by the inclusion of Wirsching’s rain flow 
correction factor in spectral fatigue calculations. 

 
CONCLUSION 

 
This study presents procedure automation of full 

stochastic spectral based fatigue analysis of ship 
structure using ANSY and 3D linear sea keeping code 
AQWA. Spectral fatigue analysis is considered as the 
most reliable among the numerous methods for fatigue 
assessment of ship structure. Stochastic spectral fatigue 
is a complex and numerically intensive technique and 
requires a robust automated workflow of the process for 
efficient implementation to ship structures. In this 
study, various technical aspects of spectral fatigue 
methods are discussed in detail. For each aspect, APDL 
macros are created and subsequently implemented to 
automate the workflow of the process and to reduce the 
pre/post processing time for efficient implementation of 
the method to ship structures. A MATLAB program is 
developed to calculate cumulative fatigue damage. A 
numerical case study is conducted and the automation 
procedure is employed to predict fatigue life of a 
structure detail of a multihull craft for different sea 
scatter diagrams. Effect of Wirsching’s rain flow 
correction factor toward predicted fatigue life of the 
structure is also investigated. The research study will 
provide a system to perform spectral fatigue analysis 
efficiently and accurately. 
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