Research Journal of Applied Sciences, Engineering and Technology 5(17): 4291-4294, 2013 DOI:10.19026/rjaset.5.4419 ISSN: 2040-7459; e-ISSN: 2040-7467 © 2013 Maxwell Scientific Publication Corp. Submitted: July 27, 2012 Accepted: September 17, 2012 Pu

Published: May 01, 2013

Research Article The Dispersion of Nanometer SIC on Electro Less Ni-P-Nano SIC Composite Plating

Hong Wang and Yubao Cao

Department of Mechanical and Electronic Engineering, Weifang University, Weifang 261061, China

Abstract: In this study, we study the effects of the concentration of Sic using the orthogonal test method, the speed of mixing, the temperature and the surfactants on depositing rate and micro-hardness and obtain the optimized technological scheme and fine Ni-P-SIC composite coating. The results showed that using citric acid-acetic acid as complexing agents can obtain high speed of depositing and homogeneous coating with Sic well-distributed. Among the technological parameters, the effects of temperature on depositing rate are biggest and the surfactants are next; the effects of the concentration of Sic particles on micro-hardness are biggest and the surfactants are next. Give consideration to depositing rate and stability of the liquid, the temperature should be controlled at $82\pm2^{\circ}$ C, the concentration of Sic particles and surfactants should be controlled in 4 g/L and 60 mg/L. The influence to micro-hardness value of coating with ultrasonic disperser craft also is studied.

Keywords: Depositing rate, disperser, electro less composite plating, micro-hardness, microstructure, nanometer sic, speed of mixing ultrasonic, surfactant

INTRODUCTION

With the rapid development of aviation, aerospace, electronic, mechanical, chemical and nuclear energy, a variety of new functional and structural materials are becoming urgent need and some single material cannot meet some special requirements, therefore, composite materials have been developed rapidly. Composite plating, also known as spread-plated, composite coatings with wear and corrosion resistance were deposited on the surface of metal matrix layer by electroplating or electro less composite plating to achieve longer life, saving material, reducing costs and improving economic efficiency (Chen, 2005; Guo and Zhou, 2000; Yang *et al.*, 2009; Feng *et al.*, 2010; Liu *et al.*, 2008; Jin *et al.*, 2010).

Electro less composite plating is a more convenient and economical way for preparation of composite coating, easy to operate, less investment in equipment, easy to control, low energy consumption. This study uses a way of adding single Sic wear particles to the Ni-P alloy bath, deposits wear and corrosion Ni-P-Sic composite coating on the surface of 45 steel by electro less composite plating that can be used for piston rings, cylinder liners, molds, bearings, crankshaft and other mechanical parts, extending its life.

EXPERIMENT

Experimental instrument and materials: Experimental instrument is shown in Table 1. Use the

Table 1: Experimental instrument	
Instrument name	Specification
Collector constant temperature heating magnetic	DF-101S
stirrer	
Desktop CNC ultrasonic cleaner	KQ5200DB
PH meter	FE20K
Electronic analytical balance	AR423CN
Vickers hardness tester	HVS-10

ordinary carbon structural steel plate Q235 as sample, Size (L×W×H) is $15\times15\times2$ mm, respectively produced by Weifang red flag Machinery Factory. Before plating pretreatment of the sample must be carried out whose process is described below:

Chemical degreasing \rightarrow Rinse with distilled water \rightarrow Ultrasonic cleaning \rightarrow Rinse with distilled water \rightarrow 10%HCl Activating (1-2 min) \rightarrow Rinse with distilled water.

Bath components are selected according to the results of a large number of single-factor test (Wu *et al.*, 1997), the composition of plating solution is shown in Table 2.

The physics performance of nano-Sic particles used in this study is indicated in Table 3.

Test method: The plating speed is indicated by the coating weight gain per unit area and per unit time. First, clean degrease the substrate and then weigh on analytical balance in the parts per million, record the quality m_1 . After plating, clean degrease the sample and

Corresponding Author: Hong Wang, Department of Mechanical and Electronic Engineering, Weifang University, Weifang 261061, China

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

Table 2: The co	mposition of plating	g soln						
Composition	NiSO ₄ ·6H ₂ O	NaH ₂ PO ₂ ·H	I ₂ O Na ₃ C _{it} ·H ₂ O	CH ₃ CO	CH ₃ COONa Accelerant [g/L] [g/L]		Stabilize	r NanoSIC
	[g/L]	[g/L]	[g/L]	[g/L]			[mg/L]	[g/L]
Content	25	30	35	5		5	5	
Table 3: Physics	performance of the	e nanometer part	icle of SIC					
Average size	Surface area	Crystal	Color	Free silicon	Total oxyg	en content	Purity	Bulk density
40nm	$90 \text{ m}^2/\text{g}$	Cubic	Gray-green	<0.2%	<0.61%		>99.09%	0.05 g/cm^{3}
	-	structure						-
Table 4: Orthog	onal factors and lev	vel						
Factors level	Concentrati	ion of SIC [g/L]	Speed of a	mixing [r/min]	Surfa	ctant [mg/L]		Temperature [°C]
1	6		200		30			77
2	4		250		60			82
3	2		300		90			87
	a							
Table 5: The int	fluence of factor on	depositing rate	and analysis		F (F)	~	FA 63	
Factor level no	Concentration	of SIC [g/L]	Speed of mixing	r/min] Surfa	ctant [mg/L]	Tempera	ture [°C]	Depositing rate [g/m ² h]
1	1		1	1		1		46.667
2	1		2	2		2		47.222
3	1		3	3		3		49.060
4	2		3	2		1		37.778
5	2		1	3		2		53.333
6	2		2	1		3		60.556
7	3		2	3		1		29.445
8	3		3	1		2		94.445
9	3		1	2		3		78 472
R1	47 650		59 491	67.22	3	37 964		,
R2	50 556		45 741	54 49	1	65,000		
R3	67 454		60.428	43.94	6	62.696		
Differential	10 804		14 687	23.27	7	27.036		
Differential	19.004		14.007	23.27	/	27.030		
Table 6. The int	fluence of factor on	micro-hardness	and analysis					
Factor level No	Concentration	of SIC [g/L]	Sneed of mixing [r/min] Surfac	tant [mg/L]	Temperatur	e[°C] M	ficro-hardnessHV ₀₁
1	1	51 510 [6/12]	1	1	and [ing/D]	1	2	68
2	1		2	2		2	6	00
3	1		3	3		3	3	90

Res. J. Appl. Sci. Eng. Technol., 5(17): 4291-4294, 2013

then weigh on analytical balance in the parts per million again and record the quality m_2 . Plating rate is calculated by Eq. (1):

$$V = \frac{m_2 - m_1}{S \times t} \tag{1}$$

Formula S-Plating area (m^2) T-Plating time (h)

Experiments load applied is 100 g, loading time is 15s. Select three different locations in the coating surface to test their hardness, calculate the average hardness by the online system using Eq. (2):

$$HV = 1854.5 \times F \div D^2$$
 (2)

- Formula HV-Vickers micro hardness symbol
- (Kgf/mm^2)
- F-The load applied to the specimen (g)
- D-Diagonal (µm)

The L_9^3 orthogonal table has been used to study the effects of the concentration of Sic, the speed of mixing, the temperature and the surfactants on depositing rate and micro-hardness. Each factor is tested by three

levels, experimental factors and levels are shown in Table 4.

460

The surface and cross-section morphology of composite coatings were identified by QUANTA200 environmental Scanning Electron Microscopy (SEM) under the test condition of accelerating voltage 3.0 kV. Elements of composite coatings were determined by their micro-scanning using INCA ENERGY 300 X-ray Energy Dispersive Spectroscopy (EDS) under the test condition of accelerating voltage of 25kV.

TEST RESULTS AND DISCUSSION

The influence of factor on depositing rate and analysis: The influence of factor on depositing rate and analysis is shown in Table 5.

Table 5 shows the analysis results that within the scope of this experiment, temperature is a major factor in the coating deposition rate, surfactant concentration is a secondary factor affecting the plating rate, stirring speed and amount of Sic is little effect to plating rate.

The influence of factor on micro-hardness and analysis: The influence of factor on micro-hardness and analysis is shown in Table 6.

Table 6 shows the analysis results that within the scope of this experiment, the amount of Sic are the

Fig. 1: Cross-section and surface morphology of composite coatings (a) Surface morphology (b) Cross-section morphology

Table 7: Element distribution comparison about the region A and B of composite coatings

Fig. 2: ED's patterns of different positions on composite coatings in Fig.1

main factors impacting coating micro hardness, the content of surfactant is the secondary factor affecting coating micro hardness.

Surface morphologres and composition analysis: It can be seen from Fig. 1, composite coating with uniform and dense dispersed small Sic particles.

Figure 2 and Table 7 showed that the Chemical Constituents were different between the region A and B of composite coatings. The element contents of C and Si in the place of A were significantly higher than B. There were small Sic particles in the region A.

CONCLUSION

The results showed that using citric acid-acetic acid as complexing agents can obtain high speed of depositing and homogeneous coating with Sic welldistributed. Among the technological parameters, the effects of temperature on depositing rate is biggest and the mixing speed is next; the effects of the concentration of Sic particles on micro-hardness is biggest and the mixing speed is next. Give consideration to depositing rate and stability of the liquid, the temperature should be controlled at $82\pm2^{\circ}$ C, the concentration of Sic particles and surfactants should be controlled in 4 g/L and 60 mg/L.

ACKNOWLEDGMENT

This study was financially supported by the Science and Technology Projects of Shandong Education Department (J11LD56) and Shandong Province Natural Science Foundation Funded Projects (ZR2011EL003).

REFERENCES

- Chen, S.G., 2005. Thermal processing. 12(2): 43, (In Chinese).
- Feng, Q.M., Z.B. Liu and Y. Liu, 2010. J. Xi' a Polytech. Uni., 24 (2): 189, (In Chinese).
- Guo, Z.J. and J.J. Zhou, 2000. Petrochemical corrosion and protection. 15: 46, (In Chinese).

- Jin, Y.Z., J.G. Deng, D.L. Liu and X.G. Zeng, 2010. J. Sichuan Uni. Sci. Eng. (Natural Science Edition), 23(6): 730, (In Chinese).
- Liu, X.L., Y.Y. Liu, H. Huang, N. Leng and X.L. Dong, 2008. Materials Mechanical Eng., 32(4): 54, (In Chinese).
- Wu, Y.Y., C.S. Dai, Y.Z. Zhang and X.G. Hu, 1997. Plating Environ. Protection, 17(2): 14, (In Chinese).
- Yang, G.R., Y. Ma, X.M. Zhang and Y. Hao, 2009. Materials Protection, 42(7): 18, (In Chinese).