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Abstract: This study presents a technique which utilizes the movement of the peak of the main beam towards the 
presumed signal direction with negative diagonal loading for robust general-rank beamformer. The main beam 
symmetry along presumed signal direction is improved by this movement. When desired signal is contained in the 
data snapshots, the conventional beamformers face the problem of performance degradation even if there is a small 
mismatch between the presumed and the actual signal direction. Diagonal loading is a popular technique to mitigate 
this problem. There is no definite criterion to find diagonal loading level. A new diagonal loading method has been 
proposed in the literature which utilizes the movement of the peak of main beam towards the presumed signal 
direction with positive diagonal loading. The proposed technique works iteratively for the selection of negative 
diagonal loading level to move the main beam at a position to get the beam symmetry at desired level and hence the 
desired robustness. The mismatched signal will not be cancelled as long as it is within the half of the width of the 
main beam. But there is the tradeoff between this robustness and interference cancelling capability. 
 
Keywords: Adaptive beamforming, Minimum Variance Distortionless Response (MVDR) beamformer, robust 

adaptive beamforming  

 
INTRODUCTION 

 
Adaptive beamforming is a popular spatial filtering 

technique which utilizes antenna arrays for signal 
estimation from desired direction (Zaman et al., 2012a, 
b and c) and placing nulls in the direction of undesired 
signals (Khan et al., 2011). The weights of the 
beamformer are optimized according to some specific 
criteria, such as minimum variance, maximum entropy 
and maximum Signal to Interference-plus-Noise Ratio 
(SINR). Beamforming finds its applications in the fields 
of radar, sonar, medical imaging and wireless 
communications (Synnevag et al., 2009; Sharma et al., 
2008; Roy et al., 2009). Minimum Variance 
Distortionless Response (MVDR), Sample Matrix 
Inversion (SMI), Linearly Constrained Minimum 
Variance (LCMV) and Generalized Sidelobe Canceller 
(GSC) are the popular adaptive beamformers. When 
desired signal is present in data snapshots and there is a 
mismatch between the presumed and actual signal 
direction, the desired signal is taken as interference. In 
such situations, the desired signal is cancelled and the 
performance of the beamformer degrades severely. 
Efforts are in progress to develop robust algorithms for 
such mismatches.  

Diagonal loading (Carlson, 1988) is a popular 
technique robust against direction of arrival mismatch 
but has no suitable way to find the diagonal loading 

factor. Another attractive approach is robust adaptive 
beamforming using worst case performance 
optimization (Vorobyov et al., 2003). But its 
performance is quite close to the simple algorithm 
known as diagonal Loading of the Sample Matrix 
Inversion (LSMI) algorithm. These beamformers utilize 
positive diagonal loading and their performance 
depends upon the proper selection of diagonal loading 
factor. A new diagonal loading technique appears in 
(Wang and Wu, 2011) which finds diagonal loading 
level by utilizing the fact that the peak of the main 
beam moves towards the presumed direction by 
increasing the diagonal loading level. This technique is 
effective if the mismatched signal appears within the 
half of the width of the main beam. There is a tradeoff 
between robustness against signal look direction error 
(controlled by the movement of the peak of the main 
beam) and the interference suppression capability. 
Robust   general-rank    beamformer   (Shahbazpanahi 
et al., 2003) utilizes negative and positive diagonal 
loading for presumed and received signal covariance 
matrices respectively. Negative diagonal loading is 
meant for the robustness against direction of arrival 
mismatch. If this loading level exceeds beyond a certain 
limit, the presumed signal covariance matrix no longer 
remains positive semi-definite and becomes useless. 

This study utilizes the movement of the peak of the 
main beam towards the presumed signal direction by 



 

 

Res. J. Appl. Sci. Eng. Technol., 5(17): 4257-4263, 2013 

 

4258 

negative diagonal loading and the expression for 
maximum value of the diagonal loading level, that 
maintains the positive definite property of the negative 
diagonal loaded matrix, is given. Diagonal loading level 
is increased from minimum towards maximum 
iteratively to achieve the beam symmetry up to the 
desired level for robust general-rank beamformer. The 
technique given in (Chen and Vaidyanathan, 2007) 
utilize angular region of mismatch for the robustness of 
the beamformer. Same diagonal loading level is applied 
to the signals regardless of small or large mismatch in 
that region i.e., same compromise for null depth 
regardless of small or large DOA mismatch. On the 
other hand this technique utilizes beam symmetry to 
select diagonal loading level. If mismatch is small, 
small value of diagonal loading level will give desired 
beam symmetry and large diagonal loading level will be 
required to achieve desired beam symmetry for large 
mismatch i.e., compromise on null depth is different for 
different situations.  
 

LITERATURE REVIEW 

 
Mathematical model: Consider a uniform linear array 
of M  antenna elements with inter-element spacing λ/2, 

where λ  is the wavelength of incoming narrow band 
signal of interest. Let the array receives signals from K  

far-field sources. The output of the i
th

 antenna element 

i.e.,{�����}��	��
   is given by: 
 

����� = � 
����	�������
�

��	
����� + ����� 

 

In the above expression, s��n� represents the signal 

amplitude received from l
th

 source and ����� is the 

additive white noise added at the output of i th
 sensor. 

The output vector  y(n) contains the individual outputs 
of all the elements and is given as: 

 ���� = [�	�������� … �
���]!                                    (1) 
 

The source signal vector s(n) representing signal 
amplitudes from K  sources and is given as: 

 "��� = [�	�������� … . �����]! 

 
These sources are considered to be uncorrelated to each 
other and their correlation matrix Rs  

 is given by: 
 

$" = %&�	� 0 … 0⋮ ⋱ ⋮0 … &�*�
+ 

 

In the above expression,  {&��� }��	��*
 
represents the power 

of the signal received from  l
th

 source. A set of steering 

vectors  ,�-��: / = 1, … 2can be defined as: 

,�-�� =  [1
�4�
��4� … 
��
�	�4�]! 

 
where,   ∅� = 6�7�-� 
These vectors can be placed in a single matrix A  given 
as: 

 
 8 = [,�-	�,�-�� … ,�-*�] 

 
y(n) Can be expressed as: 
 

y (n) = As (n) + v (n) 

 
where, v(n) is the noise vector having uncorrelated 
components and hence its correlation matrix is given as: 
 $9 = :[9���9;���] = &<�=
 

   
 

The correlation matrix Ry  of received signal is given 
by: 
 

 $� = :[�����;���] = 8$"8> + &?�@A                         (2) 

 
MVDR Beamformer: This beamformer utilizes second 
order statistics of the array output. It minimizes the 
variance (average output power) of the beamformer and 
maintains the distortionless response in the desired 
signal direction. Let  ,�-�� be the steering vector in the 

desired signal direction and R is the received signal 
covariance matrix, the optimization problem and its 

solution in terms of beamformer weight vector wMv 
 are 

given in (3) and (4) respectively (Liu et al., 2003): 
 B>C  DEF $B subject to B>,�-�� = 1                                   (3)  

 

B
< = $GH,��I�
,J��I�$GH,��I�                                                   (4) 

 
SMI Beamformer: This beamformer minimizes Signal 
to Interference-plus-Noise Ratio (SINR) of the array 
output. Let  Rs be the signal covariance matrix, the 
optimization problem for this beamformer is stated as: 
 CKLCC  DEF  subject to CKLTC = 1                                 (5) 
 

The solution to this optimization problem as given 
in (Shahbazpanahi et al., 2003), is wopt = P{R

-1
Rs}, 

where P{.}  is the Eigen vector corresponding to the 
maximal Eigen value and wopt   is the optimized weight 
vector.  
 

ROBUST ADAPTIVE BEAMFORMERS 
 

The performance of traditional beamformers 
degrades severely due to errors in the signal look 
direction. Robust algorithms have been developed to 
mitigate this problem. In this section, two robust 
beamforming algorithms i.e., Loaded SMI and General-
Rank beamformers are being discussed. 
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Loaded SMI beamformer: The key idea for this 

beamformer is to add some quadratic penalty to 

regularize the solution for optimum weight vector. The 

optimization problem for this beamformer is defined as: 

 

 B;U  DEF �$ + V@�B �WXY
Z[ [\ B;$"B = 1 

 

The robust weight vector for this beamformer 

comes out to be as: 

 B]^
_ = `{�$ + V@��	$" 

 

In the above expression, $ + V@ and I  are the 

diagonally loaded sample covariance matrix and 

identity matrix respectively. The variance of artificial 

noise is increased by an amount V  in this method. This 

approach puts more effort to suppress white noise rather 

than interference. Due to above mentioned 

modification; LSMI improves the performance of 

Sample Matrix Inversion (SMI) method in the presence 

of an arbitrary steering vector mismatch. But this 

improvement is not so significant in case of look 

direction error vector with large norm (Song et al., 

2006). Moreover, another serious shortcoming of this 

approach is that there is no reliable way to choose 

proper value for the loading factor V, as the optimal 

choice of V is dependent on unknown parameters of 

signal and interference (Shahbazpanahi et al., 2003). 

However recommended loading factor is &��  ≤ &]� <10&��  where  &]� is the diagonal loading level and &��  is 

the noise power (Jeyali and Sukanesh, 2011) so, the 

minimum loading level must be equal to noise 

power &�  � i.e., minimal Eigen value of  R. 

 

Robust general-rank beamformer: This beamformer 

assumes that the mismatch in desired signal direction of 

arrival causes an error matrix ∆ in Rs. Let ∆ be 

bounded by some known positive constant ε  i.e., ||∆|| ≤ ε. Where||.||  denotes Frobenius norm of a 

matrix. In (Shahbazpanahi et al., 2003), the SINR 

maximization problem has been modified for the 

robustness of the beamformer against DOA mismatch 

as given below: 

 B;U  DEF $B subject to B;�$" + ∆�B ≥ 1          for all ||∆|| ≤ k                                            (6) 

 

For the worst case performance, ∆ can be found by 

solving the following optimization problem. 

 min△ B;�$" + ∆�B subject to ||∆|| ≤ k 

For this problem ∆ , as given in (Shahbazpanahi et al., 

2003) comes out to be: 

 

∆= −k BBJ
‖B‖q                                                           (7) 

 

 

By putting the value of ∆, the optimization 

problem (5) becomes as: 

 B;C  DEF $B subject to B;(Rs−k@)B = 1 
 

The optimum weight vector for the robust 

beamformer comes out to be: 

 Brst = `{$�	�$" − k@�}                            (8) 

 

To overcome other array imperfections, another similar 

mismatch matrix  ∆	 is considered in R, with the 

condition  ||∆	|| ≤ V. The robust weight vector, as 

given in (Shahbazpanahi et al., 2003) comes out to be: 

 Brst.� = `{�$ + V@��	�$� − k@�}               (9) 

 

If we put k = 0, Brst.� = Buvw=. This shows that 

LSMI beamformer is the special case of General-Rank 

beamformer.  

 

PROPOSED DIAGONAL LOADING 

ALGORITHM 

 

In this section, we will discuss the flow chart with 

parameters and steps of the proposed algorithm for 

optimum diagonal loading level. The proposed 

algorithm presents iterative approach to find diagonal 

loading level from the range ofεand V to get desired 

beam symmetry. Since LSMI beamformer is the special 

case of General-Rank beamformer, therefore the 

proposed algorithm is developed for General-Rank 

beamformer. The parameters used in the proposed 

algorithm are discussed below. 

In case of direction of arrival mismatch if the 

diagonal loading level is zero, the General-Rank robust 

beamformer becomes SMI beamformer and the desired 

signal is cancelled. As the diagonal loading level is 

increased, the peak of the main beam moves gradually 

towards the presumed signal direction and the desired 

signal cancellation along with interference suppression 

capability will be reduced (Wang and Wu, 2011). If the 

peak of the main beam is moved at the presumed signal 

direction and the direction of arrival mismatch is within 

the half of the width of the main beam, the desired 
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signal will not be suppressed heavily. A sufficient 

condition to guarantee the peak of the main beam at the 

presumed signal direction is the exact left-right 

symmetry at the presumed signal direction. For a 

uniform linear array of M  antenna elements with inter-

element spacing d and wavelength of incoming narrow 

band signal equal to λ, the approximate width of the 

main beam is given as  -xy = z{.|}

y  (Wang and Wu, 

2011). When the ideal diagonal loading shifts the peak 

of the main beam at the presumed signal direction, the 

following condition will be satisfied: 

 

10/\~	{��rst,�; ,�-� + �-���−10/\~	{��rst,�; ,�-�    − �-���
   = 0                                                                                   (10) 

 

where, �- ≤ 0.5-xy. Under this condition beam is 

ideally symmetric along the presumed signal direction. 

But this will require diagonal loading level very high 

(ideally infinity) with very small interference 

suppression capability. The above expression can be 

modified as given below (Wang and Wu, 2011):                                                                 
 

�10/\~	{�Brst,�;  ,�-� + �-���−10/\~	{��rst,�; ,�-� −
�-2= �                                                                                  (11) 

 

where, � is the trade off parameter which we call 

symmetry of the main beam at a distance �- from 

presumed signal direction. This parameter controls 

robustness and interference suppression capability.  

An expression for negative diagonal loading factor k  

for robust general-rank beamformer is given below 

(Chen and Vaidyanathan, 2007): 

 

 k =  max�I�������I��� ||,�-�,; �-� − ,�-��,;�-��||(12) 

 

where  ||.||
  

represents Frobenius norm of a matrix and 

the desired signal mismatch region is represented 

by -� − �- ≤ - ≤ -� + �-. This expression limits the 

value of k up to the level to guarantee the negative 

diagonally loaded signal covariance matrix  �$" − k@� 

to remain positive definite. The other parameters used 

in the flowchart are given as:  

 

 kx�� =  max�I�������I��� ||,�-�,; �-� −
,�-��,;�-��||  

 kx�� = max�I�����∆�����I�����∆� ||,�-�,; �-� 

                                                                          −,�-��,;�-��||  
 

It means kx��  is sought by expanding the region 

around -�. This expand and seek process continues until  kx��   is achieved. It is the upper limit of negative 

diagonal loading factor: 

 �V
 
= The step size for the positive diagonal loading 

factor V  �k  = The step size for the negative diagonal loading 

factorε  

 

1m =
10

2

10 log ( )s

H a θ + δθw = output power of 

beamformer at  -� + �-
 
for certain values of ε  and V 

which give weight vector w  during an iteration   

m2 = 10/\~	{|B;,�-� − �-�|�= output power of 

beamformer at -� + �- for certain values of � and V 

which give weight vector w during an iteration B = `{�$ + V@��	�$" − k@� = weight vector for 

certain values of k  and V during an iteration 

 

Step 1: Initialization: In this step minimum and 

maximum values of diagonal loading level are 

initialized as shown in flow chart.  

Step 2: Evaluation of w: Weight vector w with initial 

values of V and ε is evaluated. 

Step 3: Comparison: Constraint given in (6) is checked 

using weight vector. 

Step 4: Evaluation of m1 and  m2: If constraint in (6) is 

satisfied, m1 and m2 are evaluated otherwise 

positive diagonal loading level is increased 

gradually with step size �V and go to step 2 

until constraint in (6) is satisfied. 

It must be noted that for a certain value of  ε  

there is a particular minimum value 

of  V which satisfies constraint (6). The 

algorithm does not converge if V is below that 

particular value and converges for all higher 

values of V. 

Step 5: If desired beam symmetry is achieved, Stop, 

otherwise increase negative diagonal loading 

level gradually with step size �k
 
 and go to 

step 2. Else stop with best available weight 

vector. 

 

Weight vector for only those minimum values of  V 

andε  is selected as wrob,s which gives best symmetry in 

the half power beam width in the signal mismatch 

region. Since this weight vector corresponds to 

minimum values of  V  and ε , so gives better null depth 

in addition to better performance in the signal mismatch 

region.  
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Flow chart for the proposed algorithm 

 
SIMULATION RESULTS FOR ROBUST 

ADAPTIVE BEAMFORMERS 
 

A uniform linear array of 15 antenna elements 
has been used with inter element spacing �/2. One 
desired signal with presumed direction along 0º and 
two interferences at 35º and 70º are used. The SNR 
and INR are 10 dB and 30 dB respectively. 
Simulations are carried out in MATLAB and all the 
results are averaged over 500 snapshots. 
 
Performance of MVDR beamformer: In this case, 
the Performance of MVDR beamformer is discussed  

for both with and without DOA mismatch. Without 

DOA mismatch, the output power of the beamformer 

at 3° is -1.86 dB. While for the DOA mismatch case, 

the performance of beamformer degraded i.e., the 

output power of the beamformer at 3° is -31.65 dB. 

The comparison of both situations can be observed 

from Fig. 1a and b. 

 

Performance of robust general rank beamformer: 

In this case, we evaluate the performance of robust 

general rank beamformer. The actual DOA of the 

signal  is  taken  along  3°. By  using expression (12),  

Initialize 

min
,γ = γ

max
,γ

min
ε = ε , µ , max

ε  

Evaluate w 

If 

 
2

( ) 1Ha θ ≥w , For 

s sθ −δθ ≤ θ ≤ θ + δθ  

 

γγ = γ + δ

 

No 

Yes 

Evaluate
1 2,m m  

If 

1 2( )abs m m− ≤ µ  

Yes 

,rob sw w=

 

εε = ε + δ  

If 

max
ε ≤ ε  

 No Yes 

minγ = γ  

No 
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(a) 

 
(b) 

Fig. 1: Performance of MVDR beamformer: (a) without 

mismatch, (b) with mismatch 

 

 
 
Fig. 2: Performance of robust general-rank beamformer 

for � =4.54, � =
 
140 and � =3.24 dB at ±3˚ 

 

we get  k = 4.54 and for k = 4.54, � = 7.33 dB at 

±3˚, and the proposed algorithm converges for γ = 39. 

So clearly, one can observe the improvement by 

comparing Fig. 1b and 2. 
 
Beam symmetry with ε and γ:  In this sub-section, 
we discuss the beam symmetry which is defined as: 
 |10/\~	{��	� − 10/\~	{����| 
  

We use a uniform linear array of 15 elements to 

observe beam symmetry by varying k  and γ. In 
Table 1 beam symmetry is elaborated for increasing 

values of ε . It is clear from Table 1, that as k 

increases, beam symmetry improves and the desired 
signal cancellation in the mismatch region decreases. 

In ideal situation the beam symmetry is zero. 
In Table 2, we discussed the beam symmetry for 

increasing values of γ. The beam symmetry improves  

Table 1: Beam symmetry with increasing values of � �    V         Symmetry at ±3˚ Symmetry at ±2˚ Symmetry at =1˚ 

0     0 36.71dB 11.07 dB 4.66 dB 
2    289 2.2891 dB 1.4068 dB 0.6730 dB 
4    289 1.9028 dB 1.1720 dB 0.5613 dB 
6    289 1.5147 dB  dB 0.4478 dB 

 
Table 2: Beam symmetry with increasing values of   V

 �    V         Symmetry at±3˚ Symmetry at ±2˚ Symmetry at ±1˚ 

4    30 8.9487 dB 5.1258 dB 2.3795 dB 
4    60 6.1032 dB 3.6288 dB 1.7102 dB 
4    90 4.6947 dB 2.8324 dB 1.3434 dB 
4    120 3.8405 dB 2.3349 dB 1.1114 dB 
4    150 3.2509 dB 1.9855 dB 0.9470 dB 
4    180 2.8158 dB 1.7248 dB 0.8238 dB 
4    210 2.4933 dB 1.5307 dB 0.7319 dB 
4    240 2.2291 dB 1.3705 dB 0.6558 dB 
4    270 2.0092 dB 1.2368 dB 0.5921 dB 

 
Table 3: Comparison  of Null  depth  with  increasing  values  of � 

and V V � Signal (dB)  Null_1 (dB)  Null_2 (dB) 

5 1.0000 -12.04 -69.93 -74.32 
5 2.0000 -10.72 -68.60 -72.90 
5 3.0000 -8.85 -66.49 -70.01 
25 4.0000  1.3 -55.01 -59.47 
50 4.0000  4.15 -50.92 -56.27 
50 4.5000  4.5 -50.2 -55.87 

 
for the increasing values of γ. From both tables, it is 
quite clear that the beam symmetry is much improved 

for small increasing values of k as compare to γ.  
 
Null depth and diagonal loading level: One can 
observe from Table 3 the tradeoff between signal 

strength and null depth. As the value of ε  or γ 

increase the null depth decreases while the strength 
of signal improves. 
 

CONCLUSION AND FUTURE WORK 

 

In this study, we discussed diagonal loading for 

robust general rank beamformer. Diagonal loading is 

selected iteratively on the basis of desired beam 

symmetry at an angle in the signal mismatch region. 

In future, we will discuss it for three dimensional 

arrays. 
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