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Abstract: In the present study the effect of air swirl on the combustion characteristics and pollutant emission of 
biodiesel B5, B10 and gasoil combustion is studied. The experiments are carried out on an axisymmetric cylindrical 
combustion chamber. Numerical investigation is conducted using fluent computer code. The RNG, k-ɛ model is 
used for the modelling of the turbulence phenomena in the combustion chamber .The eddy dissipation model is used 
for the simulation of transport combustion. The experimental and numerical result show that the exhaust gas 
temperature, the levels of NOx and CO2 emission increase with increase of swirl number and then decrease. The CO 
emission declines with increase of swirl number. The numerical and experimental results are in good agreement. 
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INTRODUCTION 

 
Industrial development and social growth and as a 

result steep rise for the demand of fossil fuels in one 
hand and on the other hand pollutant emission of 
petroleum-based fuels and its effects on environment 
has led to numerous investigation on alternative fuels 
which can be produced from local resources within the 
country. Biofuels are a broad range of fuels which are 
derived from biomass. The term covers solid biomass, 
liquid fuels and various biogases including charcoal, 
vegetable oil, bioethers, biodiesel, syngases, etc. 
Biodiesel refers to mono alkyl esters of long-chain fatty 
acids derived from the transesterification of vegetable 
oil or animal fat feedstock, for use in liquid burners and 
diesel  engines  as fuel (Panwar et al., 2010; Skoglund 
et al., 2010). A by-product of the transesterification 
process is the production of glycerol which can be used 
in pharmaceutical and personal care applications. 
Properties of biodiesel are similar to common diesel 
fuel. The main difference between biodiesel and diesel 
fuel is oxygen content, which is biodiesel contains 10-
12 weight percentage oxygen which has improved its 
performance attributes such as increased cetane number 
and high fuel lubricating value. However, the calorific 
value of biodiesel is lower than regular diesel fuel. 
Biodiesel have negligible sulfur and ash content, so 
sulfur dioxide emission and toxic pollutants of biodiesel 
is less than diesel fuel. Many researches have been 
carried out on biodiesel and its characteristics. The 

behavior of biodiesel in internal combustion engines is 
well documented in the literatures (Senatore et al., 
2000; Roska et al., 2005; Agarwal, 2007; Shi et al., 
2005, 2006; Sharp et al., 2000, 2005; Lapuerta et al., 
2008; Monyem et al., 2001; Nabi et al., 2006; Laforgia 
and Ardito, 1995), but a few studies are conducted on 
the behavior of biodiesel in liquid burners and furnaces. 
Furthermore, the effects of different parameters such as 
air swirling flow on biodiesel combustion is not studied 
completely. Swirling flows are applied in a wide range 
of application both non-reacting and reacting system 
(Laforgia and Ardito, 1995). 

In combustion systems, it is used in various 
systems such as industrial furnaces, utility burners, gas 
turbines, internal combustion engines and many other 
practical heating devices, in order to enhance mixing 
and improve combustion and its characteristics (Lilley, 
1977; Syred and Beer, 1974). Swirling flows affect 
flame shape, flame size, stability and combustion 
intensity by formation of secondary recirculating flows 
(Chen and Driscoll, 1988). A study by Krishna (2003) 
examined the effect of replacing heating oil with 
biodiesel blends in residential heating equipment and 
commercial boilers. Here, CO emissions for blends of 
soy methyl ester with No. 2 fuel oil were found to be 
comparable to that of the fuel oil at fixed fuel pump 
pressure and at various flue gas oxygen levels. Most 
significantly, NOx levels reduced as the percentage of 
biodiesel in the fuel blends was raised. Hoon and Suyin 
(2010)  evaluated  levels  of  exhaust  species  from  the  
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Fig. 1: Laboratory combustion chamber 
 
Table 1: Properties of biodiesel and diesel fuel 

Properties Unit 
Standard 
(ASTM) Gas oil B20 

Density g/ cm3 D4052 0.815 0.849 
Viscosity Cst D445 2.45 3.01 
Low heating value MJ/kg D240 42.5 41.2 
Cetane number - D613 57.3 59.6 
Flammability point °C D93 61 72 

 
combustion of Palm Oil Methyl Ester (POME) and its 
blends with No. 2 diesel in a non-pressurized, water-
cooled combustion chamber. They explored the 
correlations between emission species and fuel 
pumping pressures over a range of equivalence ratios. 
Their results indicated an improvement in combustion 
and the potential use of palm oil biodiesels in small-
scale liquid fuel burners. Datta and Som (1999) 
investigated combustion and emission characteristics in 
a gas turbine combustor at different pressure and swirl 
conditions. They reported that an increase in swirl 
number reduces the NOx emission level at all 
combustor pressures. However, though at lower 
pressure and increase in swirl number decreases 
combustion efficiency, the trend is exactly the reverse 
at higher pressure. The effect of swirl on combustion 
dynamics in a lean-premixed swirl-stabilized combustor 
is studied by Huang and Yang (2009). They found out 
that a high swirl number tends to increase the 
turbulence intensity and the flame speed and 
consequently shorten the flame length. However, 
excessive swirl often causes the central recirculating 
flow to enter into the inlet annulus and leads to the 
occurrence of flame flashback. Bashirnezhad et al. 
(2007) studies the effect of fuel angles and air swirling 
flow on soot formation. They showed that the 
maximum temperature of flame has increased with 
increase of swirl number and remained constant with 
further increase of swirl number. The aim of this study 
is measuring regulated emissions such as CO, CO2, NOx 
and flame temperature from boiler fueled with biodiesel 
and gasoil at different swirl number. 
 
Experimental setup: The laboratory furnace which is 
used in this research includes a horizontal cylinder to 
the length of 170 cm and diameter of 50 cm. On the 
rims  of  furnace  some  orifices in different spaces from 
burner nozzle have been made for measuring 
temperature and sampling combustion gases. The liquid 

 
 

Fig. 2: Swirler 
 
burner is a pressure jet oil burner with 400 KW 
maximum power rating. The fuel is supplied to the 
nozzle at pressure of 12 bars. The fuel and air flow rate 
are adjustable using the oil pump and the burner air 
valve, respectively. A variable swirl burner provides 
near-burner zone high mixing rates of air and fuel. Fuel 
is injected to the furnace through a 60° hollow-cone 
nozzle. A K Type thermocouple, which stands high 
temperatures, is used to provide temperature 
measurements within the furnace. The thermocouple is 
directly coupled with a voltmeter which shows the 
temperature in Celsius. Figure 1 shows the laboratory 
combustion chamber. Table 1 compares the properties 
of diesel fuel and biodiesel that is used as fuel.  

In order to produce swirling flow, five air swirlers 
having different vane angles are applied. They are made 
from mild steel. The inner diameter of air swirlers is 20 
mm  and their outer diameter is 60mm. The vane angles 
of air swirlers are 0°, 30°, 45°, 60° and 75° that their 
swirl number are 0, 0.42, 0.72, 1.25 and 2.7 
respectively. Figure 2 demonstrates the swirlers. All of 
the measurements are made after stabilization of 
furnace temperature. During the experiments, the air 
and input fuel temperatures have been controlled and 
maintained. The sampling device has been placed in the 
stack for analyzing exhaust gases, on the 160cm from 
furnace vent. The gas stream produced from 
combustion like CO, CO2 and NOx is registered each 5 
minutes  using  a  Testo 350 XL for analyzing gas. 
Table 2 demonstrates a list of instruments and their 
specifications. 
 
Numerical simulation: The continuity, momentum and 
energy equations in cylindrical coordinates can be 
expressed in the form of general form of governing 
equation: 
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where, φ is a dependent variable and can be mass, 
momentum, Turbulence kinetic energy and its 
dissipation rate and enthalpy. Гφ is the diffusion 
coefficient and Sφ is the source term.  

Swirl flow affects the combustion and the 
characteristics of flame by enhancing the mixing of fuel  
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Table 2: List of measurement instruments and their specifications 
Instrument Range Resolution Accuracy (%) 
Hotek AM 4206vanemometer 0.4-25 m/s 0.1 m/s ±2 
Satronic SOG960 oil flow meter 1-40 lit/h ± 0.01 lit/h ±2.5 
K- type thermocouple for exhaust gas temperature 0-1100°C ± 1°C ±0.75 
O2 sensor 0-25% ± 0.1 % ±0.2 
CO2 sensor 0-20% ± 0.1 % ±2 
CO sensor 0-10,000 ppm ±1 ppm ±2 
SO2 sensor 0-5000 ppm ±1 ppm ±2 
NO sensor 0-3000 ppm ±1 ppm ±2 
NO2 sensor 0- 500 ppm ± 0.1 ppm ±2 
 
and air. These affects are depending on the intensity of 
swirl which is shown with a non-dimensional parameter 
called swirl number S. Swirl number is defined as the 
axial flux of swirl momentum divided by axial flux of 
axial momentum, times the equivalent nozzle radius 
(Gupta et al., 1984): 
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NOx Post-processing: In the present study, thermal-
NOx and prompt NOx is considered which their 
modeling is carried out in the post-processing stage. A 
single transport equation for mean NO mass fraction 
with a source term is solved after obtaining converged 
solution for the flow and mixing field through the 
turbulent flow calculations: 
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The kinetics of the thermal NOx formation rate is 
much slower than the main hydrocarbon oxidation rate 
and most of the thermal NOx is formed after completion 
of combustion. Therefore, the thermal NO formation 
process can often be decoupled from the main 
combustion reaction mechanism and the NO formation 
rate can be calculated by assuming equilibration or 
partial equilibration of the combustion reactions.  

The thermal NOx is formed by the oxidation of 
atmospheric nitrogen at high temperatures and prompt 
NOx is formed by reactions of intermediate species at 
the flame front (Ilbas et al., 2005). The principal 
reactions governing the formation of thermal NOx from 
molecular nitrogen are given by the extended Zeldovich 
mechanism (Zeldovich, 1947): 

NNONO k +⎯→←+ ±1
2  

 
NNOON k +⎯→←+ ±2

2  
 

HNOOHN k +⎯→←+ ±3                                    (6) 
 
k1, k2 and k3 are the rate constants for the forward 
reactions 11-13 respectively and k-1, k-2 and k-3 are the 
corresponding reverse rates. The overall thermal NO 
formation rate can be calculated as: 
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The concentration of O and OH is given by: 
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The prompt NOx formation is significant in most 
hydrocarbon fuel combustion conditions and the prompt 
NOx route is generally accepted as: 

 
NHCNNCH +⎯→←+  

NNOON +⎯→←+ 2  
OHCNOHHCN 2+⎯→←+  

CONOOCN +⎯→←+ 2                              (9) 
 
The prompt NO formation rate is calculated from 

the (De Soete, 1975) global model as: 
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