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Abstract: Since the value of money changes with time, it is necessary to take account of the influence of time factor 
in making the replenishment policy. In this study, to investigate the influence of the time value of money to the 
inventory strategy, an inventory system for deteriorating items with stock-dependent demand is investigated under 
two levels of trade credit. The method to efficiently determine the optimal cycle time is presented. Numerical 
examples are provided to demonstrate the model and the method. 
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INTRODUCTION 
 

In real market to stimulate retailer’s ordering 
qualities the supplier allows a certain fixed permissible 
delay in payment, which is trade credit, to settle the 
amount. Similarly, a retailer may offer his/her customs 
a permissible delay period to settle the outstanding 
balance when they received a trade credit by the 
supplier, which is a two-level trade credit. Goyal (1985) 
developed an EOQ model for permissible delays in 
payment. Huang (2003) extended Goyal’ model (Goyal, 
1985) to an inventory model with two levels of trade 
credit. Chang et al. (2010a) discussed an optimal 
manufacturer’s replenishment policies for deteriorating 
items. Min et al. (2010) established an EOQ model for 
deterioration items with a current-stock-dependent 
demand. Kreng and Tan (2010) proposed to determine 
the optimal replenishment decisions if the purchasers 
order quantity is greater than or equal to a 
predetermined quantity.  

In the above inventory models did not consider the 
effects of the time value of money. All cashes have 
different values at different points of time. Therefore, it 
is necessary to take the effect of the time value of 
money on the inventory policy into consideration. 
Chang et al. (2010b) investigated the DCF approach to 
establish an inventory model for deteriorating items 
with trade credit based on the order quantity. Chung 
and Lin (2011) used the DCF approach for the analysis 
of the inventory model for trade credit in economic 
ordering policies of deteriorating items. Chung and 
Liao (2006, 2009) adopted the DCF approach to discuss 
the  effect  of  trade  credit  depending  on  the  ordering  

quantity. Liao and Huang (2010) extended the 
inventory model to consider the factors of two levels of 
trade credit, deterioration and time discounting.  

In this study, we develop an inventory system for 
deteriorating items and stock-dependent demand is 
investigated under two-level trade credit and time value 
of money. The theorem is developed to efficiently 
determine the optimal cycle time and the present value 
of total cost for the retailer. Finally, numerical 
examples and sensitive analysis of major parameters are 
given to illustrate the theoretical result obtain some 
managerial insight.   
 

NOTATIONS AND ASSUMPTIONS 
 
Notations: The following notations are used throughout 
this study.  
 
A  =  The ordering cost one order 
c   =  Unit purchasing cost per item 
p   =  Unit selling price per item p>c 
h   = Holding cost per unit time excluding interest 

charges
r    =  The continuous rate of discount 
I(t) =  The inventory level at the time of t 
T   =  The cycle time
Q    =  The retailer’ order quantity per cycle
 
Assumptions: The assumptions in this study are as 
follows:  
 
• Time horizon is infinite and the lead time is 

negligible 
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• Replenishments are instantaneous and shortage is 
not allowed  

• A constant θ(θ<θ<1) fraction of the on-hand 
inventory deteriorates per unit of time and there is 
no repair or replacement of the deteriorated 
inventory  

• The demand rate D(t) is a known function of 
retailer’s instantaneous stock level I(t), which is 
given by D(t) = D + αI(t), where D and α are 
positive constants  

• When T≥M, the account is settled at T = Mand the 
retailer would pay for the interest charges on items 
in stock with rate Ip (per $ per year) over the 
interval [M, T]; when T≤M, the account is also 
settled at T = M and the retailer does not need to 
pay any interest charge of items in stock during the 
whole cycle  

• The retailer can accumulate revenue and earn 
interest after his/her customer pays for the amount 
of purchasing cost to the retailer until the end of 
the trade credit period offered by the supplier. That 
is, the retailer can accumulate revenue and earn 
interest during the period N to M with rate Ie  (per 
$ per year) under the condition of trade credit  

• The fixed credit period offered by the supplier to 
the retailer is no less to his/her customers, i.e., 0<N 
≤M.  

 
MATHEMATICAL MODEL 

 
Based on above assumptions, depletion due to 

demand and deterioration will occur simultaneously. 
The inventory level of the system can be described by 
the following differential equation:  

 
' ( ) ( ) ( )I t I t D I tθ α+ = − − , 0 t T≤ ≤ , ( ) 0I T =  

 
The solution to above equation is:  
 

( ) ( )( ) ( )1T tI t D e α θ α θ+ −⎡ ⎤= − +⎣ ⎦ , 0 t T≤ ≤  

 
So the retailer’s order size per cycle is:  
 

( ) ( )(0) 1TQ I D e α θ α θ+⎡ ⎤= = − +⎣ ⎦  

 
The present value of all future cash-flow cost PV∞ 

(T) consists of the following elements:  
 

• The present value of order cost: Vo = A/(1-e-rT)  
• The present value of holding cost excluding 

interest charges:  
 

( )
( )

( )( )0

1 ;
1 1

T rTT rt
H rT rT

h hD e eV I t e d t
e rr e

α θ

α θ α θ

+ −
−

− −

⎡ ⎤−⎢ ⎥= = −
− + + + −⎢ ⎥⎣ ⎦

∫
 

 
• The present value of purchasing cost:  

( )( )
( )( )1

1 1

rM rM
T

C rT rT

cQe cDeV e
e e

α θ

α θ

− −
+

− −
= = −
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Additionally, the present values of interest charged 

and earned are addressed as follows: 
  

Case 1: 0<T≤N.  
 
There is no interest charged, that is VIPI = 0. In this 

case, the present value of interest earned is:  
 

( )

( )
( ) ( ) ( ) ( )( )

1 0

2

1
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Case 2: N<T≤M.  
 

This case is similar case 1, there is no interest 
charged, that is VIP2 = 0 and the present value of 
interest earned is:  
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Case 3: M < T. 

 
In this case, the present value of interest charged is 

given by:  
 

( )

( )( )
( )( )

3 1

.
1

Tp rt
IP rT M

T M rM rT rT rM
p

rT

cI
V I t e dt

e
cI D e e e e

r re

α θ

α θα θ

−
−

+ − − − − −

−

=
−

⎡ ⎤− −
= +⎢ ⎥

+ ++ − ⎢ ⎥⎣ ⎦

∫
 

 
The present value of interest earned is:  
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From the above arguments, PV∞ (T) can be 

expressed as:  
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( )
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where, PVj(T) = VO + VH + VC + VIPj - VIEj j = 1, 2, 3 
 

Since PV1(N) = PV2(N) and PV2(M) = PV3(M), 

PV∞(T) is continuous and well-defined.  
 

THEORETICAL RESULTS 
 

The objective in this study is to find the 
replenishment time T* to minimize the present value of 
all future cash-flow cost of the retailer.  
 
Case 1: 0<T≤N.  
 

Taking derivative of PV1(T) with respect to T, we 
obtain:      
 

( ) ( ) ( )2'
1 1 1 .rT rTPV T f T e e− −= −                   (1) 

 
where,  
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And f1(0) = - rA.  
 
From (2) we know that  
 

( ) ( ) ( ) ( )'
1 1 .TrTf T e e Dg Tα θ+= −                    (3) 

where,   
 

( ) ( ) ( ) ( ).T rN rM
eg T E pI e e eα θθ α θ− + − −= − − +     (4) 

 
Lemma 1: Let T*

1 is the minimum point of PV1(T) on 
(0, N]. 
 
• When g(N)≥0, if f1(N)<0, T*

1 = N; else, T*
1 = T0

1, 
where T0

1 is the unique solution of f1(T) = 0on (0, 
N]  

• When g(N) < 0, T*
1 = N 

 
Proof: since ( ) ( ) ( )' 0TrN rM

eg T pI e e e α θθ − +− −= − ≥ , we know 
g(T) is increasing on (0, N].  

• If g(N)≥0, (i) when g(0)≥0, we have g(T)≥0, that 
is, ଵ݂

ᇱ1(T)<0. If f1(N)<0, then we have f1(T)<0 and 
from (1) we obtain T*

1 = N; else, there is the 
unique T0

 .N] which satisfies f1(T) = 0 ,0)א1
Furthermore, we have f1(T)≤0 for T0)א, T0

1] and 
f1(T)>0 for Tא(T0

1, N] and from (1) we obtain T*
1 

= T0
1; (ii) when g(0)<0, g(T) = 0 has a unique root 

(say T#
1) on (0, N] and g(T)≤0 for T0)א, T#

1], g(T) 
>0for Tא(T#

1, N]. Similar (i), we obtain if f1(N)< 
0, then f1(N)<0 for Tא(T#

1, N]; else, f1(T)≤0 for 
Tא(T#

1, T0
1] and f1(T)>0 for Tא(T0

1, N], 
Additionally, f1(T) is decreasing on (0, T#

1], so we 
get the same result as (i).  

• When g(N)<0, we have g(T)<0, that is ଵ݂
ᇱ (T)<0. 

Since f1(0)<0, we have f1(T)<0 for T0)א,N] and 
from (1) we obtain T*

1 = N.  
 
Case 2: N≤T≤M.  
 

Taking derivation of PV2(T) with respect to T, we 
have    

 
 ( ) ( ) ( )2'

2 2 1 .rT rTPV T f T e e− −= −                            (5) 
 
where,  
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From (6) we have    
 

( ) ( ) ( ) ( )'
2 1 .TrTf T e De h Tα θ+= −                                (7) 

 
where,  
 

( ) ( ) ( ) ( ).T rM r N
eh T E pI e eα θ α θθ α α θ− + − − + +⎡ ⎤= + + +⎣ ⎦  (8) 

 
Lemma 2: Let T*

2is the minimum point of PV2(T) on 
[N, M].  
 
• If h(M)≥0, (i) when f2(N)≥0, T*

2 = N; (ii) when 
f2(N)<0, T*

2 = T0
2 if f2(M)≥0; else, T*

2 = M, where 
T0

2 is the unique solution of f2(T) = 0on [N, M]; 
• If h (N)≥0>(M), (i) when f2 (T#

2)<0, T*
2 = M; 

(ii)when f2 (T#
2)≥0 PV2(T*

2) = min {PV2(N), 
PV2(M)}, if f2(N)≥0; else, when f2(M)≥0, then T*

2 
= T0

2, where T0
2 is the unique solution of f2(T)≥ = 

0 on [N, M]; when f2(M)<0, PV2(T*
2) = min 

{PV2(T0
2), PV2(M)}, where T0

2 is the smallest 
solution of f2(T) = 0 on [N, M]. 
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• If h (N)<0, then PV2(T*
2) = min {PV2(N), 

PV2(M)}, where T#
2 is unique solution of  h(T) = 

0on [N, M].  
 
Proof: Since ( ) ( )' 0T rM

eh T pI e α θθ − + −= − < , we know h(T) 
is decreasing on [N, M] .   
• If h(M)≥0, then we have h(T)≥0, that is, f'2(T) ≤0, 

(i) When f2(N)≥0, we know f2(T)≥0  for Tא(N,M],. 
From (5) we obtain T*

2= N; (ii) when f2(N)<0 
f2(M), there exists a unique root T0

 N,M], to)א2
f2(T) = 0 and f2(T)≤0 0for Tא(N, T0

2], f2(T)>0, for 
Tא(T3

2, M]. From (5) we obtain T*
2 = T0

2; (iii) 
when f2 (T)<0, we have f2(T)<0  for Tא(N, M], and 
from (5) we obtain T*

2 = M.  
• When h(N)≥0>h (M), h(T) = 0has a unique 

root(say T#
2) and h(T)≥0 for [N, T#

2], h(T)<0 for 
Tא(T#

2, M], and from (7) we obtain f2(T) is 
increasing on [N, T#

2] and decreasing on (T#
2, M. 

(i) If f2(T#
2)<0, then we have f2(T)<0  for Tא(N, 

M]. From (5) we obtain T*
2 = M; (ii) If., when 

f2(N)≥0, if f2(M)≥0, then we have f2(T)≥0 for 
Tא(N,M],  and from (5) we obtain T*1 = N; else, 
the equation f2(T) = 0 has a unique root (say T1

2) 
on [T#

2, M] and f2(T)≥0 for Tא(T#
2, T1

2], f2(T)<0 
for Tא(T1

2, M]. Additionally, f2(T) is increasing on 
Tא[N, T#

2], so f2(T)≥0 when Tא[N, T1
2], f2(T)<0  

when Tא(T1
2, M] and from (5) we obtain PV2(T*

2) 
= min{PV2 (N), PV2(M)}; Consequently, when 
f2(N)≥0, PV2(T*

2) = min {PV2(N), PV2(M)}  .  When f2(N)<0, the equation f2(T) = 0has a unique 
root (say T0

2) on [N, T#
2]. If f2(M)≥0, then we have 

f2(T)≥0  for Tא(T#
2, M],  . Similarly, we obtain T*

2 
= T0

2; If f2(M)<0, then there exists a unique 
solution T2

#T)א 2
2, M] and f2(T)≥0 for Tא(T#

2, 
T2

2], f2(T)<0 for. Tא(T2
2, M],  From (5) we obtain  

PV2(T*
2) min {PV2(T#

2), PV2(M), when Tא(T#
2, 

M], since PV2(T0
2)≤ PV2(T#

2), so PV2(T0
2) min 

{PV2(T0
2), PV2(M)} where T0

2 is the smallest 
solution of f2(T) = 0 on [N, M]  

• When h(N)<0, we have h(T)<0. From (7) we know 
ሖ݂ଶ(T)<0 for Tא[N, M]. (i) If f2(T)≥0, then  f2(T)≥0 

for Tא[N, M] and from (5) we obtain T*
2 = N; (ii) 

If f2(M)<0≤f2(N), then f2(T) = 0 has a unique root 
T3

2 on[N, M] and f2(T)≥0 when  Tא(N, T3
2], f2(T) 

<0 when Tא(T3
2, M] and from (5) we have 

PV2(T*
2) = min {PV2 (N), PV2(M)}; (iii) If f2(N)< 

0, then we have f2(T)≤0  for Tא[N,M] and from (5) 
we have T*2 = M.  
 

Case 3: M≤T.  
 

Taking derivative of PV3(T) with respect to T, we 
obtain: 

     

( ) ( ) ( )2'
3 3 1 .rT rTPV T f T e e− −= −                     (9) 

where,  

( ) ( ) ( ) ( )

( )( ) ( )
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From (10) we know that:  
  

( ) ( ) ( )'
3 1 .TrTf T e De Kα θ+= −                           (11) 

 
where, 
 

( ) ( ) ( )( ).r M r N r Me
p

pIK E cI e e eα θ α θ α θα
α θ

− + + − + + − + += + + −
+ (12) 

 
Lemma 3: Let T*

3 is the minimum point of PV3(T) on 
[M, + ∞) 
 
• When K≥0, T*

3 = M if f2(M)≥0; else, T*
3 = T0

3, 
where T0

3 is the unique solution of f3(T) = 0  on 
[M, +∞) 

• (b)When K<0, ( ) ( ) ( ){ }*
3 3 3 3min , lim

T
PV T PV M PV T

→+∞
=   

 
Proof:  
 
• When K≥0, we have ( )3lim

T
f T

→+∞
= +∞  and ሖ݂ଷ(T)≥0 for 

Tא(M, +∞); (i) If f3(M)≥0, then for Tא(M, + ∞], 
and from (9) we obtain T*

3 = M; (ii) If f3(M)<0, 
then f3(T) = 0 has a unique root T0

3on [M, + ∞) 
and f3(T)≤0 for Tא[M, T0

3], f3(T)>0 for Tא(T0
3, ∞) 

and from (9) we obtain T*
3 = T0

3.  
• When K<0, we have ( )3lim

T
f T

→+∞
= −∞ and ሖ݂ଷ1(T)<0, 

(i) If  f3(M)≥0, then there is a unique root T1
3 on 

[M, + ∞) and f3(T)≥0    for Tא(M, T1
3], f3(T)<0  

for Tא(T1
3 + ∞) and from (9) we obtain 

( ) ( ) ( ){ }*
3 3 3 3min , lim

T
PV T PV M PV T

→+∞
= ; (ii) If 

f3(M)<0, then f3(T)<0  for Tא[M, + ∞] and from 

(9) we obtain ( ) ( )*
3 3 3lim

T
PV T PV T

→+∞
= .  

 
From lemmas 1-3, we have the following result.  
 
Theorem 1: The optimal cycle time T* and the present 
value of all future cash-flow cost PV∞(T*) will be 
determined by the following:  
 

( ) ( ) ( ) ( ){ }* * * *
1 1 2 2 3 3min , ,PV T PV T PV T PV T∞ =  



 
 

Res. J. Appl. Sci. Eng. Technol., 5(18): 4524-4529, 2013 
 

4528 

Table 1: r = 0.08, the impact of change of M and N on T*and 
PV∞(T*)  M N PV1(T*

1) PV2(T*
2) PV3(T*

3) T* 
0.30 0.10 18696 15398 15327  T*

3 = 0.3657
0.20 16060 15445 15366 T*

3 = 0.3691
0.30 15521 15521 15429 T*

3 = 0.3747
0.40 0.10 18509 15130 15142 T*

2 = 0.3680
0.20 15870 15168 15178 T*

2 = 0.3715
0.30 15327 15231 15237 T*

2 = 0.3771
0.5 0.10 18325 14934 15102 T*

2 = 0.3696
0.20 15681 14973 15132 T*

2 = 0.3730
0.30 15135 15036 15181 T*

2 = 0.3787
 

 
 
Fig. 1: The impact of change of r on T*  
 

 
 
Fig. 2: The impact of change of ron PV∞(T*) 

  
NUMERICAL EXAMPLLES 

 
To illustrate the results obtained in this study, we 

provide the following numerical examples.  
Let A = $50/order, D = 200 unit/year, c = $5/unit, 
α = 0.3, θ = 0.05, Ip = 0.08/$/year, p = $7/unit, Ie = 
0.05/ $/year 
In Table 1, we study the effects of change of 

parameters M and N on T* and PV∞(T*).  
The following inferences can be made based on 

Table 1:  
 

• For fixed other parameters, the larger the value of 
M, the smaller the value of PV∞(T*) and larger the 
value of T*.  

 
 
Fig. 3: The impact of change of r on K1 and  K2 

 

• For fixed other parameters, the larger the value of 
N, the larger the values of PV∞ (T*) and T*.  

 
Figure 1 to 2 show when M = 0.3 year and N = 0.1 

year, the relative change of T*, PV∞(T*), relative ratios   
K1 and K2  (where PV* and T*

 are the value of optimal 
present value of all future cash-flow cost and the value 
of the optimal cycle time when r = 1, K1 = [PV∞(T*)- 
PV*]/PV∞(T*) and K2 = (T* - T*)/T*). when the 
parameter of the discount rate r is changed from (0, 1].  

The following inferences can be made based on 
Fig. 1 to 3:  

 
• For fixed other parameters, the larger the value of 

r, the smaller the values of T* and PV∞(T*).  
• For fixed other parameters, the larger the value of 

r, the smaller the relative ratios K1 and K2.  
 

CONCLUSION 
 

In this study, an inventory model for deteriorating 
items with two-level trade credit is established by DCF 
approach. We assumed that the demand is stock-
dependent and the retailer pays for the purchasing cost 
to the supplier until the end of the trade credit period. 
By analyzing the present value of all future cash-flow 
cost, we developed theoretical results to obtain optimal 
solutions. Finally, we provided numerical examples to 
illustrate the proposed model and conducted a sensitive 
analysis of key parameters.  

In regards to future research, one could consider 
incorporating more realistic assumptions into the 
model, such as the demand dependents the selling price, 
trade credit links to order quantity, etc.  
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