
Research Journal of Applied Sciences, Engineering and Technology 5(18): 4438-4443, 2013

DOI:10.19026/rjaset.5.4352

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: July 27, 2012 Accepted: September 17, 2012 Published: May 05, 2013

Corresponding Author: Jiang Zhong-Qiu, Huaian College of Information Technology, Huai’an Jiangsu, 213003, China
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

4438

Research Article
Android Graphic System Acceleration Based on DirectFB

1
Jiang Zhong-Qiu,

2
Zhang Min and

1
Liu Chang-Rong

1
Huaian College of Information Technology, Huai’an Jiangsu, 213003, China

2
National ASIC System Engineering Research Center, Southeast University, Nanjing 210096, China

Abstract: In this study, based on analyzing the hardware abstraction layer and native graphics libraries of Android
graphics system, the drawback of Skia library which could only support software rendering is pointed out. And
then the third-party open graphics library DirectFB which supports 2D hardware acceleration is introduced, the
architecture and interface of DirectFB and Skia are analyzed and compared with each other in detail. After DirectFB
being ported into Android system, a novel hardware acceleration layer with double-buffer technology is designed
and implemented, which will make Skia and DirectFB coexist and complement with each other and ultimately
implement the 2D hardware acceleration in Android system. A JNI interface is designed for Java programs. The
optimization scheme is verified by the specialized test benchmarks df-dok, the experimental results indicated that
the performance of Android graphics system in layer blending operations is accelerated by an average of 5.58x as
well as 2.18x speedup on average in bitblit operations when processing complex graphics operations such as layer
blending and bitblit etc.

Keywords: Adaptation layer, android graphics system, DirectFB, hardware acceleration, Skia

INTRODUCTION

With the rapid development of Mobile Internet, a

variety of mobile devices, such as net-book, intelligent
cell phone and tablets etc., emerge to our life and they
are becoming indispensable partitions of our daily work
and life. The hardware configuration is continual
enhanced and updated, while user feeling is not only
decided by the hardware configuration, but also
seriously lays on the software system coupled with the
hardware platforms. Up to Now, the state-of-art public
intelligent OS (Operating System) is mainly composed
of Windows mobile series of Microsoft Corp android of
Google and iOS of Apple Corp etc.

Google’s Android system is firstly released in Nov.
5
th
, 2007 (Android (Operating System), 2010) formally.

It is mainly constructed by operation system, middle
firmware, user interface and applications. It is the
newest OS, but the most public one to engineers.
Compared to other closed OS, it adopts the Apache
license, its source code is open and free, which makes it
to be the most popular one for many corporations home
and abroad, such as Motorola, Samsung, Sony Ericsson,
China mobile and Huawei etc., most of them have
selected it as their based developing platforms. Android
has become the hot-spot in industry and academia
scopes.

The graphics system and UI (User Interface) are the
key-partition of the Android system, the performance
and even the success or failure of one mobile device

mostly relies on them. As the core engine of 2D
graphics sub-system, Skia only supports software
rendering acceleration, which has made the graphic
system to be bottle-neck of system performance,
especially in sceneries involving numerous image
drawing and complex UI displaying. There are few
literatures in this scope, the major optimization
approaches is to adopt the hardware accelerating port of
Copybit module to improve the 2D graphic processing,
but it could only issue a few simple operations and
couldn’t cover the whole 2D operations. From this
viewpoint, the Android graphic system is paid emphasis
on in this study to find other hardware scheme to
accelerate 2D graphic rendering. It is difficult to modify
the Skia directly to make it support hardware
acceleration taking large risk. DirectFB with the
characteristic of open source is introduced and ported to
Android system, which will make it cooperation with
the native Skia and eventually accelerating 2D graphics
rendering by hardware.

The relation Research works on Android could be
classified into three levels. The first one is Android
applications. Ping-Xin (2009) implemented input
method into the input frame of Android. Ughetti et al.
(2008) designed a P2P mobile application program
based on the agent mechanism and this communication
model of JADE frame will make developers to design
P2P software with high efficiency. The second one is
focused on the Android frame, which lies in the cross-
platform porting and optimization of Dalvik VM

Res. J. Appl. Sci. Eng. Technol., 5(18): 4438-4443, 2013

4439

(Virtual Machine), including design and optimization of
the application frame and local frame. Tapia (2008)
improved the performance of open core in Android for
Audio codec and the related operations. Cheung (2009)
adopted a novel Markov decision process to optimize
software in Android. The third class is about the driver
level and system porting. The drivers in low level are
important partitions of Android, which includes Linux
kernel, drivers and Android HAL (Hardware Abstract
Level) etc. Wen-Chang Chung (Xuguang, 2009)
discussed the Android system porting for PX270
platform of Marvell. There are some research works at
this point. Yonggang et al. (2010) studied the
application of 2D hardware graphics acceleration in the
embedded multimedia system based on Linux, a self-
adaption and seamless architecture of software and
hardware graphics acceleration has been designed and a
scheme for buffer submitting based on computing
workloads has been introduced. Compared to the
previous researches, the hardware adaption level of
Android is focused on and optimized in ours, DirectFB
is discussed in detail and 2D hardware acceleration units
is utilized to improve the performance of graphics
system as well as the whole system.

In this study, the drawback of Skia library which

could only support software rendering is pointed out.

And then the third-party open graphics library DirectFB

which supports 2D hardware acceleration is introduced,

the architecture and interface of DirectFB and Skia are

analyzed and compared with each other in detail. After

DirectFB being ported into Android system, a novel

hardware acceleration layer with double-buffer

technology is designed and implemented, which will

make Skia and DirectFB coexist and complement with

each other and ultimately implement the 2D hardware

acceleration in Android system. A JNI interface is

designed for Java programs. The optimization scheme is

verified by the specialized test benchmarks df-dok, the

experimental results indicated that the performance of

Android graphics system in layer blending operations is

accelerated by an average of 5.58x as well as 2.18x

speedup on average in bit lit operations when processing

complex graphics operations such as layer blending and

bitblit etc.

ANDROID GRAPHIC SYSTEM

Android is a large and complex system, it includes

Linux kernel, hardware adaption level, system frame

level and Java application level. Linux kernel is the core

and fundamental partition, the schedule algorithm is

optimized for Android based on the standard Linux

kernel and some other drivers are added into it. Drivers

operate the hardware in low level directly, therefore

designing efficient drivers for one fixed hardware

platform is very important. The hardware adaption level

is the interface package between kernel and application

level. The next level is the Android system frame layer,

Fig. 1: Graphic sub-system of DirectFB

which includes the application frame layer to provide

API for Java applications. And some other open source

libs such as Bionic, C lib and Skia etc., are added into it.

Dalvik VM (Yi-Min and Rong, 2010) compiles the Java

code to class files and transforms it into .dex files, the

compiled Java program will ignore the platforms’

differences and run cross-platform.

The graphics system adaption layer is analyzed and

improved in our work, which includes graphics

hardware adaption layer android graphics lib and

application frame layer related to graphics. The graphics

hardware adaption layer is constructed by PMEM,

Framebuffer driver module and Gralloc graphics

memory allocation module; they are the basement for

system running. Graphics frame includes Libui lib,

SurfaceFlinger lib, OpenGL ES lib and Skia lib. Skia is

the native 2D graphics rendering engine lib of Android

which is our focus point.

ANALYSIS OF DIRECTFB GRAPHICS

LIB FRAME

As the graphics lib of the embedded system,

DirectFB is a complete system, as showing in Fig. 1, it

composed three layers. The first one is Window

Manager (2011), which is utilized to control the layout

and display of windows. The second one is the

implementation of DirectFB, it could be classified into

graphic operation, input system, image loading, Font

rendering and video playback according to functions.

The window manager is not isolated, but tightly coupled

to the middle layer. The reason lies in that the operations

such as window rendering, click on, image display and

video playback in those windows are based on the

corresponding sub-system in this layer. The third one is

the resource management layer, which is basement for

the middle layer. Its functions includes two sides, one

Res. J. Appl. Sci. Eng. Technol., 5(18): 4438-4443, 2013

4440

Fig. 2: Architecture of DirectFB

Fig. 3: Integration of Skia and DirectFB in android

side is in charge of memory allocation and release for
the sub-systems in middle layer and the other side is for
access to the lock and signal transmitting etc. They are
the fundamental for the intra-system of sub-systems and
inter-system to share resource of the whole platform.

This study focuses on performance of the graphics
rendering and the design architecture of DirectFB
graphics operations is paid emphasis on.

As showed in Fig. 2, the architecture of DirectFB
(Renesas Solution Corp, 2005) composes user
application layer, kernel driver layer and hardware layer.
The user application layer could be divided into
DirectFB application and lib layer. The DirectFB
applications utilize the standard API (Application
Interface) to finish the related operations such as
rectangle filling/drawing and block transmitting etc.
And those API will call down for the general GFX
drivers which lies in user state, it will check whether the
system supports hardware acceleration or not. If the
hardware layer supports graphics acceleration modules
with the correspondent kernel drivers, GFX will utilize
the hardware acceleration module with kernel driver for
graphics rendering, the native software API of DirectFB
will be used for rendering on the other side. Whether
hardware acceleration or software rendering, the final
graphics data will be transmitted to Framebuffer for
display.

Fig. 4: Switch process of double buffer

Design and implementation of DirectFB: As showed

in Fig. 3, the white rectangles construct the Skia

graphics system. Skia has a hardware acceleration

module and the correspondent driver, but all of the 2D

graphics operations could only be issued by software

due to lack of hardware calling interface in its engine.

This mechanism will degrade the performance of

Android graphics system significantly.

Those gray rectangles outline the DirectFB’s layout

in Android graphics system. DirectFB and Skia are in

the same layer of Android and provide 2D graphics

drawing API for the upper applications, while DirectFB

can call for the 2D hardware acceleration module in

GFX driver frame for hardware acceleration. The upper

applications will own two schemes for graphics

rendering, Skia will be selected in sceneries of low

performance or without hardware acceleration and

DirectFB should be chose for the sceneries needing high

performance and with hardware acceleration interface.

Hardware acceleration for DirectFB: Frame buffer

driver is utilized to control the hardware display unit

which is the final step in graphics system. User

applications will call for the operation interface of

graphics lib firstly, select hardware or software

rendering interface according to the hardware functions

and system configurations and eventually transmit the

graphics data into Framebuffer to display on screen.

Either for the Gralloc module of Skia or the FBDev

module of DirectFB, they are all based on standard

Framebuffer driver. Thus optimization for the

Framebuffer driver is very important in integrating

DirectFB into the Android system.

The Framebuffer driver could be optimized from

two sides. The first one is to allocate more than one

cache buffer and control them to output graphics data to

display unit alternatively. While the second one lies in

that designing multi-layer Framebuffer and composed

them by hardware to output graphics data. These two

sides will be discussed in detail as following.

Adopting double buffer: As showed in Fig. 4, double

buffer transmitting scheme executes in the exchange

mechanism. The standard Framebuffer driver uses fb-

Res. J. Appl. Sci. Eng. Technol., 5(18): 4438-4443, 2013

4441

Fig. 5: Graphic layers combined by software

Fig. 6: Graphic layers combined by hardware

set-par() to complete displaying alternatively between
those two buffers, which needs to probe and configure
some parameters such as LCD horizontal and vertical
timing, pixel format and alpha composition etc. And
these operations will cause significant system overhead,
even lead fuzzy and flicker in large-resolution display
and high refresh rate sceneries. A dedicated interface
called fb-pan-display() is designed for the Framebuffer
driver, it is utilized to issue the exchange operation
which will reduce the calling and configuration time
significantly and improve the display quality.

Adopting multi-physical layer for display output:
Display multi-layer needs the support of the hardware
display module. The kernel allocates multi-layer
Framebuffer, each layer provides consistent upper API,
while the composition of them is completed by
hardware.

In normal applications, the multi-layer composition
is issued by software. As showed in Fig. 5, the kernel
provides Framebuffer driver for the LCD controller.
Although double buffers have been adopted, the
composition of upper multi-layer is issued by software
and then written to the Framebuffer. While the multi-
layer composition will involve alpha hybrid computation
(Pulli et al., 2005) and this will occupy a significant of
CPU resource. If the composition could be satisfied by
hardware, the graphics performance will be improved
dramatically.

As showed in Fig. 6, the processor in our scheme

support four hardware display layers, each physical

layer adopts double buffer, the upper graphics layer will

output data to the Frame buffer and those four

Framebuffer will be composed by hardware to display

eventually.

Adaptation layer of hardware acceleration module:

The adaptation layer (Takanari et al., 2007) hides the

hardware detail downside and provide unified interface

upside. The related source code could be found in

gfxdrivers/sep0611, which will be compiled and exist as

dynamic lib in system.

The hardware acceleration adaptation layer of

DirectFB needs to implement two major data structures

of GraphicsDriverFuncs and GraphicsDeviceFuncs,

which definitions locate in src/core/gfxcard.h. The

adaptation layer (Xiao-Xue et al., 2010) includes six

interface functions for GraphicsDriverFuncs, such as

Probe(), GetDriverInfo(), InitDriver(), InitDevice(),

CloseDriver(), sep0611-setup-driver(). Probe() is used

to probe whether the system support special graphics

acceleration module or not. GetDriverInfo() is utilized

to get the driver information of hardware acceleration

module. InitDriver() and CloseDriver() will initialize

and close the driver. Sep0611-setup-driver() opens the

device node of hardware acceleration module, get the

display memory and IO memory and then remap them

into user state for the upper applications to access

display memory and hardware acceleration unit directly.

Thereafter, the structure of GraphicsDeviceFuncs, which

includes the control port of hardware acceleration

module and the entire 2D graphics hardware

Res. J. Appl. Sci. Eng. Technol., 5(18): 4438-4443, 2013

4442

acceleration interface, will be instantiated (Enhua and

Youquan, 2004).

After GraphicsDriverFuncs and Graphics

DeviceFuncs being implemented, the hardware

acceleration system exists as dynamic lib in system and

it will be loaded in system initialization,

GraphicsDriverFuncs will be registered to system. After

this step, DirectFB could call the hardware interface of

GraphicsDeviceFuncs for graphics rendering.

JNI upper interface design: The upper applications of

Android system are developed by Java language and the

application frame of Android provides Java API for

developers. All of the local libs are implemented in C or

C++ language and this need to utilize JNI to provide

interface, which will make Java to call the local lib.

Therefore, after porting DirectFB to Android and

designing the hardware acceleration adaptation layer, we

implement a JNI interface in DirectFB for Java

applications.

EXPERIMENTS AND ANALYSIS

Experimental platform: We choose SEP6200 (ASIC

Center, 2010) processor as our experimental platform. It

adopts TSMC65LP CMOS process and centered in

handheld mobile communication markets with high

performance. It is composed of five major function

parts, which are system clk control, interface and port,

multi-media system, GPS navigation system and

memory system. The platform configured with 4.3 Inch

TFT LCD screen with 800*480 display resolution, 24

bit pixel data format and resistor touch panel. In

software side, we select Uboot as the system boot tools

android 2.3 based on Linux 2.6.32 kernel as OS. LCD

Framebuffer driver has been designed and optimized.

2D hardware acceleration driver and touch panel driver

have been written and added into the base system and

system image files are compiled on 64 bit ubuntu server.

Direct FB is downloaded from its official website of

www.directfb.org with the version to be 1.4.13.

DirectFB test results and analysis: DirectFB provides

hardware acceleration interface, while software

rendering is the default way. After porting DirectFB to

Android system, the df-dok test bench is used to verify

the performance of graphics rendering in DirectFB and

Skia engine and the results are compared with each

other quantitatively. The test results are showed in

Table 1 and Fig. 7.

It could be concluded from Table 1 and Fig. 7 that

the performance of software rendering for Skia and

DirectFB are almost at the same level, while compared

to the performance of 2D hardware acceleration scheme

in DirectFB, large differences will exist and the detail

analysis as following:

• The performance of Skia is perfect when its basic
drawing interface is called and utilized for simple
operations, such as draw straight line and rectangle
etc. While if these operations involve composition
of multiple graphics layers, the rendering
performance will degraded dramatically.

• The software rendering performance of Skia and

DirectFB are basically the same. The performance

improvement by DirectFB software rendering lies

in 1-2% and almost has no performance gains, thus

hardware acceleration rendering scheme by

DirectFB is the only way to optimize the Android

graphics system.

• After implementing hardware rendering of

DirectFB, for simple drawing operations such as

drawing straight line and rectangle etc., compared

to Skia, it might decrease some percentage of

rendering performance. The main reason lies in that

it will lead to numerous system states switching

when adopting the hardware acceleration scheme.

This additional overhead will increase the system

burden and it could neutralize or even overpass the

performance gains due to the hardware acceleration

module. When it is utilized to tackle with complex

graphics operations which involve numerous

computations, such as composition of multiple

graphics layers and Bitmap blitting, it could bring

about significant performance gains for graphics

system. Compared to Skia lib, the performance

enhancement for the composition of multiple

graphics layer is 558% on average and Bitmap

Table 1: Test results of Skia and DirectFB

Bench no Bench name Statics unit
Skia software
rendering

DirectFB software
rendering

DirectFB hardware
rendering

1 Draw text KChars/sec 32.965 33.027 19.700
2 Draw text2 KChars/sec 17.025 17.153 19.712
3 Draw rect MPixel/sec 37.012 37.216 71.234
4 Draw rect2 MPixel/sec 3.310 3.353 61.826
5 Draw polygon MPixel/sec 27.247 27.430 8.947
6 Draw polygon2 MPixel/sec 3.118 3.225 8.745
7 Draw lines KLines/sec 18.160 18.163 6.976
8 Draw lines2 KLines/sec 4.950 5.095 6.851
9 Draw image MPixel/sec 17.608 17.873 19.100
10 Draw image2 MPixel/sec 22.557 22.760 24.617
11 Draw image3 MPixel/sec 11.508 11.619 19.376
12 Draw image4 MPixel/sec 2.043 2.053 18.137

Res. J. Appl. Sci. Eng. Technol., 5(18): 4438-4443, 2013

4443

Fig. 7: Test results comparison between Skia and DirectFB

blitting could obtain 218% performance gains on
average.

In summary, it needs to operate multiple graphics

layers, which involves graphics layer composition and
Bitmap blitting frequently in actual applications. These
operations are complex and compute-intensive and
could be accelerated by hardware rendering of DirectFB
for performance improvement. There is some
performance loss in simple graphics operations, but this
kind of operations will not be utilized frequently. Thus
our hardware acceleration scheme by DirectFB will
bring about significant application performance gains.

CONCLUSION

The Android graphics system is studied in detail in
this study. From the adaptation layer, after the base
modules of Android graphics system such as PMEM
etc., being analyzed, the architecture and interface of
Skia and DirectFB are analyzed deeply and compared to
each other in detail. DirectFB is ported to the Android
system and made to be coexisted and complemented
with the native Skia lib. Double buffer technique is
adopted into graphics system. An adaptation layer for
hardware acceleration module is designed and the
hardware acceleration for 2D graphics rendering is
implemented eventually. A local JNI interface is
designed for Java applications in DirectFB. The
acceleration scheme is verified by df-dok test bench.
The testing results indicated that, after adopting our
hardware acceleration scheme by DirectFB, except for a
few simple graphics operations, whether vertical
compared to DirectFB software scheme, or longitudinal
compared to Skia software scheme, our scheme could
improve the performance of Android graphics system
significantly as well as the overall system performance.

ACKNOWLEDGMENT

This study is supported by Innovation Fund project

in Science and technology enterprises of Jiangsu

Province (No. BC2009207).

REFERENCES

Android (Operating System), 2010. Retrieved from:

http:// en. wikipedia. org/wiki/ Android_

(operating_ system).

ASIC Center, 2010. SEUIC SEP6200 Development

Document. Southeast University, Nanjing, pp:

5-22.

Cheung, L.T., 2009. Markov Decision Process (MDP)

framework for optimizing software on mobile

phones. International Conference on Compilers,

Architecture and Synthesis for Embedded Systems

of the 7th ACM International Conference, ACM,

New York, pp: 11-20.

Enhua, W. and L. Youquan, 2004. General purpose

computation on GPU. J. Comp. Aid. Design Comp.

Graph., 16(5): 601-612.

Ping-Xin, L., 2009. Android plug-in input method

programs design. J. Comp. Knowl. Technol., 5(35):

9979-9981.

Pulli, K., T. Aarnio, K. Roimela and J. Vaarala, 2005.

Designing graphics programming interfaces for

mobile devices. J. IEEE Comp. Graph. Appl.,

25(6): 66-75.

Renesas Solution Corp, 2005. Writing Custom GFX

Drivers for Direct FB.

Takanari, H., M. Hisao and O.K. Denis, 2007. How to

write Direct FB Gfxdrivers for your Embedded

Platform. Technology Consulting Company IGEL

Corp.

Tapia, J., 2008. Introduction to the opencore audio

components used in the android platform. New

Trends in Audio for Mobile and Handheld Devices

of the 34th AES International Conference, pp:

48-71.

Ughetti, M., T. Trucco and D. Gotta, 2008.

Development of agent-based, peer-to-peer mobile

applications on ANDROID with JADE.

Proceedings of UBICOMM, Valencia, pp:

287-294.

Window Manager, 2011. Retrieved from: http:// en.

wikipedia. org/wiki/Window_manager.

Xiao-Xue, Y., W. Li-Hu, Y. Jia-Ning and N. Li-ping,

2010. Direct FB applied in embedded remote desk

control system. J. Comp. Eng. Design, 31(9):

2127-2130.

Xuguang, H., 2009. An Introduction to Android

[DB/OL].. Inha Univeristy, Dababase Lab.

Yi-Min, Z. and CH. Rong, 2010. Analysis about

process in dalvik virtual machine. J. Comp.

Technol. Dev., 20(2): 83-86.

Yonggang, J., Q. Zhengwei, P. Juanchun and Z. Quan,

2010. Performance test and analysis for 2d graphic

accelerator on pxa300 platform. J. Comp. Appl.

Software, 27(5): 86-88.

