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Abstract: In this study, we investigate the Tchebyshev polynomials expansion method for the kernels identification 
of nonlinear systems. In aerodynamic systems, all the output data to an arbitrary input may be obtained by executing 
the Computational Fluid Dynamic (CFD) program code. This calculation process may take more than several hours 
or days to complete. In comparison with the indicial or impulse methods our method is efficient, which does not 
need more output data for the identification of the second-order kernel by running CFD code repeatedly. This new 
approach may be applied to the aeroelastic problems. Two examples illustrate the whole process. 
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INTRODUCTION 

 
Nonlinear systems are systems whose outputs are a 

nonlinear function of their inputs. There are many 
practical examples of nonlinear systems. They occur in 
diverse areas such as biological systems, communication 
systems and aerodynamic systems. Nonlinear unsteady 
aerodynamic phenomena can have a significant effect on 
the performance and stability of a flight vehicle, for an 
example, at transonic speeds where detrimental aero-
elastic phenomena are most likely to occur (Edwards 
and Malone, 1992).  

During the early development of mathematical 
models of unsteady aerodynamic responses, several 
analytically-derived unsteady aerodynamic responses, 
such as Wagner’s function, Kussner’s function, 
Theodorsen’s function and Sear’s function are studied 
(Herbert, 1925; Theodore, 1935; Küssner, 1936; Dowell 
et al., 2005). 

Nowadays, the most powerful and sophisticated 
tools for predicting nonlinear unsteady aerodynamic 
characteristics are being developed in the field of 
computational fluid dynamics (CFD) (Edward and 
Thomas, 1989). However, sometimes the computational 
costs become prohibitively expensive. This can be on 
the order of days, depending on the user demand for a 
particular computer. In order to develop mathematical 
models that completely characterize the aerodynamic 
system of interest and use these models in various 
analyses without costly re-execution of the CFD code, 
more efficient approaches are needed (Silva, 1997). 

As The Volterra theory of nonlinear systems 

provides a mathematically rigorous approximation 

technique to describe these unsteady aerodynamic 

effects. This theory was first applied by Wiener (1942). 

In modern digital signal processing fields, the truncated 

Volterra series model is widely used for nonlinear 

system representations. In discrete-time signal 

processing, once the unit sample function, quite 

different from the unit impulse function, or Dirac delta 

function, is well defined, Silva (1997) firstly applied the 

discrete-time Volterra series to a second-order truncated, 

time-invariant, CFD model. 

However, these methods require large numbers of 

CFD computations to determine Volterra second-order 

kernel. 

In our study, the first-order kernel is computed by 

the impulse method. The second-order kernel can be 

expressed by the linear combination of Tchebyshev 

orthonormal basis set. The unknown coefficients will be 

solved by the method of least squares. The advantage of 

this approach is that a few of CFD computations are 

needed. 

 

LITRATURE REVIEW 

 

Impulse method: In digital filter design, there exist 

mathematical concepts that are quite different from 

their continuous time counterparts. The unit impulse 

function is defined (Silva, 1997) in discrete systems as: 
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where, 
n  = Discrete-time variable  
 

For a class of weekly nonlinear time-invariable 
systems, the discrete-time second-order truncated 
Volterra series has the form: 
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where y is the response of this system to u, an arbitrary 
input; hn the n-order kernel; and N the memory length 
(Stephen and Leon, 1985). 

Clancy and Rugh (Steven and Wilson, 1979) 
proved that the values of the kernels can be determined 
from the responses to a set of inputs: 
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                                                                              (3) 
Using the impulse sample function (1), Silva (1997) 

in his dissertation derived the formulas of first-and-
second order kernels in the similar ways. 

Obviously the first-order kernel is easily determined 
by impulse method; however the identification of the 
second-order kernel needs more output data by 
executing CFD program code repeatedly, for an 
instance, sometimes at least hundreds of times. This 
limits the use of the impulse method to identify higher 
kernels. 
 
Tchebyshev polynomials expansion method: By 
using a time transform, the second-order Volterra 
kernel can be expressed in terms of the orthonormal 
basis set as:  
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where, α[i,j] are the coefficients; Tn[x] Tchebyshev 
polynomials which can be obtained by solving 

Tchebyshev differential equation 2 2(1 ) ''' ' 0x y xy n y− − + = . 

The Tchebyshev polynomials [ ]
n

T x  (Ogunfunmi, 

2007) can be expressed: 
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where, n = 1, 2,.. . All the Tchebyshev polynomials 

form a complete orthogonal set on the interval  with 

respect to the weighting function. It can be shown that: 
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Once all the coefficients α[i,j] have been 

determined, the second-order kernel will be obtained.  

If we know the second-order kernel function in 

advance, we can determine all the unknown coefficients. 

This enables us to evaluate whether the identification 

model is good or not.  

 

IDENTIFICATION 

 

Riccati nonlinear equation: System representations 

using differential equation models are very popular. 

Riccati equation can be used to model a class nonlinear 

circuit system. It has the form below:  
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where, i(t) is the current around the circuit; v(t) the input 

voltage; and ε  the nonlinear parameter. Here we 

assumed ε = 0.1. 

Modeling this system by second-order truncated 

Volterra  Series,  the  kernels (Wang et al., 2010, 2011) 

computed by the impulse are the following forms: 
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where T is a sufficient large constant which guarantees  

at t>T; and 
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Figure 1 and 2 show the first and second-order 

kernels respectively which have the decay properties: 

down to zero as time goes by.  

Utilizing Tchebyshev polynomial’s orthogonality, 

all the coefficients in expression (4) can be determined 

by the following formula: 
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where, 
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Fig. 1: First-kernel of Riccati equation 

 

 
 

Fig. 2: Second-kernel of Riccati equation 

 

 
 
Fig. 3: Second-kernel identified by Tchebyshev polynomials 

method 
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are constants. 

We choose ten terms of Tchebyshev polynomials 

and  work  out  total  the  coefficients. Indeed only fifty- 

 
 

Fig. 4: Comparison of the second-kernel curve by the 

Tchebyshev method and the impulse method at s=-1 

 

 
 

Fig. 5: Convolutions with kernels computed by impulse 

method and Tchebyshev polynomials method 

respectively to an indicial excitation with 0.5 

amplitudes 

 

five numbers need to be calculated from (10) for the 

symmetric second-order kernel function. 

We draw the identified three dimensional graph of 

the second-order kernel below (Fig. 3) 

With comparison of Fig. 3 and 2, the result of 

identification is a reasonable approximation. Let s =-1, 

a very good approximation result shows in the Fig. 4.  

To see the effect of identification clearly, we 

substitute the first-order kernel made by impulse 

method and the second-order kernel identified by 

Tchebyshev polynomials method into expression (2). 

The response to an indicial input with 0.5 amplitudes in 

comparison with those responses to the same input by 

convolution with the kernels obtained in the impulse 

method shows in the Fig. 5. 

From Fig. 5, it shows this nonlinear system’s 
second-order kernel can’t be ignored. The second-order 
kernel identified by using Tchebyshev polynomials 
method is quite good and can be applied to the 
convolution formula (2). This indicates that the 
Tchebyshev polynomial method is really feasible for 
identification of the nonlinear system’s Volterra 
second-order kernel. 
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Fig. 6: Response to an impulse excitation 

 

 
 
Fig. 7: Response to an sinusoid input 

 
Tchebyshev polynomials method:  In the section, we 

will show how to identify the second-order kernel by 

Tchebyshev polynomials method. 

In aerodynamic system, the responses to an 

arbitrary input, such as airfoil pitch movement, can be 

computed by the CFD method. It really needs an hour 

or more. Here we assume that the nonlinear system of 

interest can be represented by the Volterra Series which 

only has a second-order kernel function and has the 

form below: 
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Our aim is to identify this unknown kernel by 

Tchebyshev polynomials method. We rewrite the 

unknown kernel in ( , ), , [0, ]g t s t s T∈ . 

The nonlinear time-invariant system’s output y(t) 

to an arbitrary input u(t) can be expressed: 
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Note that the output can be obtained to a given 

input. We first execute an impulse excitation to this 

nonlinear system and draw its response curve below 

(Fig. 6). 

 
 

Fig. 8: Distribution of the coefficients for identification of 

second-order kernel 

 

 
 
Fig. 9: Effect of identification for the h2 (t, s) at t = s 

 
From Fig. 6, we can see that the response soon 

decays near to zero after a finite time. We take the 
length of time T = 10. 
By a time transform, we have: 
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The new function f(m,n)  by Tchebyshev 

polynomials can be expressed below: 
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Here we choose N = 10. Rewrite (14) in matrix 

form below:  
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Substituting expression (13-15) into (12), we yield: 
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Fig. 10: Effect of identification for the h 2(t, s) at s = 0 

 
 
Fig. 11: Three-dimensional graph of second-order kernel at 

(0, 5) × (0, 5) 

 

 
 
Fig. 12: Three-dimensional graph of second-order kernel at 

(0, 10) × (0, 10) 

 
where,  

1 22 2
1, 1.m n

T T

τ τ
= − = −

are constants. 

We discretize the data in the expression (16) and 

then can work out all the coefficients by the method of 

least square. 

In the identification process, input is in the form

( ) 0.5 sin(10 )u t tπ= ⋅ ⋅ ⋅   and  the output  given  by 

(Fig. 7). 

To discretize the output data, we adopt the discrete 
time step 0.01sec. All the fifty-five coefficients can be 
computed by least square estimate algorithm. The 
distribution of those coefficients shows in the Fig. 8. 

From Fig. 8, the coefficients identified are an 
acceptable approximation to the theoretical values. 

From Fig. 9 to 10, the effects of identification to 
the second-order kernel in different cases are perfect. 
Three-dimensional graphs are also given in Fig. 11-12. 

 

CONCLUSION 
 

In this study, we discuss the second-order kernel’s 
identification technique by Tchebyshev polynomials 
expansion method. In the nonlinear Riccati equation 
model, the results obtained by different methods 
preserve the consistency. In an aerodynamic system, 
output data come from executing the particular CFD 
code which needs a long time, for an example, several 
hours or days. Our method does not need more output 
data in comparison with the impulse method. Therefore, 
Tchebyshev polynomials expansion method is more 
efficient than the traditional method: indicial method 
and impulse method. 
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