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Abstract: A SVM (Support Vector Machine)-like framework provides a novel way to learn linear Principal 
Component Analysis (PCA), which is easy to be solved and can obtain the unique global solution. SVM is good at 
classification and PCA features are introduced into SVM. So, a new recognition method based on hybrid PCA and 
SVM is proposed and used for a series of experiments on non-stationary time series. The results of non-stationary 
time series recognition and prediction experiments are presented and show that the method proposed is effective. 
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INTRODUCTION 

 
In modern and unmanned machining systems, 

including dedicated transfer lines, flexible 
manufacturing systems and Reconfigurable 
Manufacturing Systems (RMS), one crucial component 
is a reliable and effective monitoring system to monitor 
process conditions and to take remedial action when 
failure occurs, or is imminent. Vibration monitoring 
method is adopted because it is of cheapness and 
convenience. Hoverer the monitoring vibration signals 
are usually some non-stationary time series. The 
Detection and identification on these time series belong 
to the problem of dynamic pattern (Wang, 2006). 

Many techniques in pattern recognition deal with 
static environments: the class distributions are 
considered relatively constant as a function of the time 
in which feature vectors are acquired. However, Time 
often plays a secondary role: it should be incorporated in 
the feature extraction procedure. For practical 
recognition tasks, the assumption of stationarity of the 
class distributions may not be hold. Alternatively, 
information in sequences of feature vectors may be used 
for recognition. We will call them dynamic pattern 
recognition problems. A dynamic pattern is a 
multidimensional pattern that evolves as a function of 
time.  

A set of feature vectors can be looked upon as the 
result of independent draws from a multi-dimensional 
distribution. All temporal information should present in 
each feature vector. Identification problem may then be 
based on the dissimilarity of a set of newly measured 
feature vectors with respect to a set of known templates. 

For running rotor machine, it is necessary to 
identify the type of faults during it’s early stage for the 
selection of appropriate operation actions to prevent a 

more severe situation, or to mitigate the consequences of 
the fault. It is not easy for an operator to identify the 
type of faults accurately, using the information given by 
instruments and alarms, with a limited time interval. 
Therefore, the use of a computer-based Fault diagnosis 
is recommended. This method is intended to support an 
operator’s decision-making, or to provide input signals 
fro a computerized faults monitoring system and a 
computerized operating–procedure management system. 

PCA is one of the most widely used tools for 

learning probabilistic models of dynamical signal series 

(Lu-Hsien et al., 2011). And PCA can model dynamical 

behaviors variation existing in the system through a 

latent variable, while SVM shows superior performance 

in classification. In this study, we seek to cope with 

above problems by integrate PCA and SVM. Firstly, a 

pre-processing scheme based on PCA is given to extract 

good feature from input attributes. Secondly, a SVM 

scheme for quality classification is provided to classify 

the chatter data. The experiments results show the 

proposed method is effective. 
 

THEORETICAL BACKGROUND 
 
Principal component analysis:  PCA (Rui and 

Wenjian, 2011) is a very popular data pre-processing 

algorithm that provides a lower dimension from a 

complex dataset and it still effectively retains the 

characteristics of the data set while having simplified 

structure and able to reveal underlying features in the 

dataset. The greatest variance by any projection of the 

data becomes the first principal component; the second 

greatest variance becomes the second principal 

component and so on. The lower order components will 

be the ones to keep as they retain most of the important 
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aspects of the dataset. Hence, PCA is often used as a 

preprocessing step to clustering.  

The typical processing for PCA are presented in the 

following (Paulo, 2005; Liao et al., 2007). Consider a 

set of M stochastic signals Xi ∈ ℜ
N
, i = 1,…. M,  each 

represented as a column vector, with mean �� =

1/� ∑ 
�
�
� . The purpose of the KL transform is to find 

an orthogonal basis to decompose a stochastic signal x, 

from the same original space, to be computed as X = 

Uv+mx, where the vector v ∈ ℜ
N
 is the projection of x in 

the basis, i.e., v = U
T
 (x-mx). The matrix U = [u1 u2 . . . 

uN] should be composed by the N orthogonal column 

vectors of the basis, verifying the eigenvalue problem: 

 

 , 1,......,
xx j j j

R u u j Nλ= =                                   (1) 

 

where, Rxx is the ensemble covariance matrix, 

computed from the set of M experiments: 

 

( )( )
1

1

1

1

T

xx i x i x

i

R X m X m
M =

= − −
− ∑                    (2) 

 

Assuming that the eigenvalues are ordered, i.e., λ1 ≥ 

λ2 ≥ . . . ≥ λN, the choice of the first n << N principal 

components, leads to an approximation to the stochastic 

signals given by the ratio on the covariance’s associated 

with the components, i.e: 

 

/
n Nn N

λ λ∑ ∑  

 

 In many applications, where stochastic 

multidimensional signals are the key to overcome the 

problem at hand, this approximation can constitute a 

large dimensional reduction and thus a computational 

complexity reduction. The advantages of PCA are 

threefold: 

 

• It is an optimal (in terms of mean squared error) 

linear scheme for compressing a set of high 

dimensional vectors into a set of lower dimensional 

vectors  

• The model parameters can be computed directly 

from the data (by diagonalizing the ensemble 

covariance)  

• Given the model parameters, projection into and 

from the bases are computationally inexpensive 

operations of complexity O (nN). 

 

SVM for classification: Support Vector Machines, first 

proposed by Vapnik (1995, 1998), based on Vapnik-

Chervonenkis theory and structural risk minimization, is 

an important tool for machine learning. The main idea of 

SVM is to first map the data points into a high-

dimensional feature space by using a kernel function and 

then to construct an optimal separating hyperplane 

between the classes in that space. The primary 

advantage of SVM over the traditional learning 

algorithm is that the solution of SVM is always globally 

optimal and avoids local minima and over-fitting in the 

training process. For further details on SVMs. The 

algorithm for gait classification is briefly introduced as 

follows (Shijie et al., 2012). 

Given that a gait data set H of M points in an n-

dimensional space containing two different classes +1 

and -1 (here +1 represents the elderly and -1 the young): 

 

( ){ }M
kkk yxH

1, =
=  

 

 where, 

 

{ }1,1, +−∈∈ k

n

k yRx                       (3) 

 

The SVM can map a given measurement xi into its 

label space  { }1,1+−∈ky
: 

 

{ } ii

n
yxRf →−+→ ,1,1:                      (4) 

 

For a test gait data x, the optimal separating hyper plane 

in SVM is formulated as: 

 

( ) ( ) 







+= ∑

∈ SVi

iii bxxKysignxf ,β                  (5) 

 

where, K(xi, xj) is a kernel function satisfying Mercer’s 

conditions ,b is a bias estimate in the training process, bi 

are the coefficients of the generalized optimal separating 

hyper plane, which are obtained by solving the 

following quadratic programming problem: 

 

( ) ββββ HIW TT

2

1
min +−=                  (6) 

 

Subject to β
T
 y = 0   and βi ∈ [0, C`] 

where, { } { } 1, == ii Iββ and H = yiyj K(xi, xj) i, j = 

1,…, M. 

For the nonlinearly separable gait data, the 

misclassification penalty parameter C0 can control the 

trade-off between the maximum margin and the 

minimum training errors and must be set to a given 

value in the training process. Similarly, the kernel 

function is very important for SVM since it defines the 

nature of the decision surface that classifies gait data. In 

this study, the following three kernels. 

 

CHATTER RECOGNITION MODEL  

BASED ON PCA-SVM 
 

This investigation uses the chatter data of cutting 

from our laboratory. Firstly, the PCA program is used to 

find  the  principal component  in  these  features and the 

programs are developed using MATLAB. And then the  
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Fig. 1: Hybrid PCA-HMM training 

 
principal components are selected using kernel as the 
input samples of SVM to solve the site selection 
problem. By learning and training, we use the data of 
this subset to find interrelationship of input and output 
and get the solution by the PCA-SVM mode in Fig. 1.  
 
To develop the PCA detection model: 
 

• Acquire a period of normal building cooling load 
data and normalize the data using the mean and 
standard deviation of each variable. 

• Choose kernel function K(xi, xj), map the original 
inputs into a high dimensional feature space F. 

• Select appropriate number of principal components, 
develop the PCA model from the scaled data array 
and calculate the principal component scores.  

 
To develop the SVM forecasting model: Suppose 
chatter data set for training is (x1, y1), (x2, y1), …, (xn, yn), 
xi ∈ R, yi ∈ R, where n is the number of samples, p is 
SVM number of input vector (the PCs of chatter data). 
 

• Using the principal components as the input 
samples of SVM, which regard as xi in training 
sample? 

• Find the optimal solution of Eq. (4) by training data 
(xi, yi), suited kernel function K(xi, xj) and 
punishment parameter c. obtain αi, b and the 
corresponding support vectors. 

• By above conditions and Eq. (4) obtain the cutting 
chatter forecasting model. 

 

EXPERIMENTS AND RESULTS 

 
Data collection: Experimental data were collected from 
the drive-end ball bearing of an induction motor driven 
mechanical system shown in Fig. 2 (Shao et al., 2008). 
The accelerometer was mounted on the motor housing at 
the drive end of the motor. Data was collected for four 
different fault conditions: 

 

• Normal (N) 

• Inner Race Fault (IRF) 

 

Fig. 2: Experiment equipment 

 

• Outer Race Fault (ORF) 

• Ball Fault (BF)  

 

Faults were introduced into the drive-end bearing 

by the Electrical Discharge Machining (EDM) method. 

For the inner race and ball fault cases, vibration data for 

three severity levels (0.1778, 0.3556 and 0.5334 mm 

dia) was collected. For the outer race fault case, 

vibration data for two different severity levels (0.1778 

and 0.5334 mm dia) was collected. As the fault 

diameters suggest, we only considered early damage. 

The depth of the faults was chosen such that the balls 

span the gap without bottoming. All the experiments 

were repeated for four different load conditions (0, 1, 2 

and 3 HP). The motor was running directly from the line 

at approximately 1200 rpm under 0, 1, 2 and 3 HP load. 

Figure 3a, b, c and d are the time series extracted 

from the measured vibration signals from above four 

experiments of norm, damage at inner race, damage at 

outer race and damage at ball of bearings separately. In 

the Fig. 3, x-ordinates substitute the sample points; y-

ordinates substitute amplitude of vibrations (Unit mm). 

 

Vibration feature extraction: Linear predictors are 

used to predict the value of the next sample of a signal 

as a linear combination of the previous samples. The 

next sample of the signal 
n
s  is predicted as the weighted 

sum of the p previous samples, sn-1,sn-2, … ,sn-p , n
s  can 

be expressed as: 

 

1 1 2 2 1

p

n n n p n p i n ii
s a s a s a s a s− − − −=
= + + + =∑L

      (7) 

 

The residual error en is defined as the difference 

between the actual and predicted values of the next 

sample and it can be expressed as: 

 

1

n

n n n n i n ii
e s s s a s −=
= − = −∑                     (8) 

 

The weighting coefficients, also referred to as the 

Linear Prediction Coefficients (LPC) a1, a2, … , ap, can 

be calculated by minimizing some functional of the 

residual signal en over each analysis window. Different 

methods can be used to find the linear prediction 

coefficients. The coefficients of linear predictors are 

equal to that of AR models. 
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(a)                                                                (b) 

 

       
 

(c)                                                                       (d) 

 

Fig. 3: Four types time series 

 

 
 
Fig. 4: Vibration feature extraction 
 
Table 1: Identification accuracies 

LPC orders Norm (%) 
Inner race  
Image (%) 

Outer race  
Damage (%) 

Ball  
damage (%) 

8 94 91 90 93 
12 93 93 93 92 
16 98 95 93 95 
24 100 96 97 100 

 

Vibration signals are non-stationary. Therefore, the 

future behaviour of a vibration signal is unpredictable. 

However, when the signal is divided into several small 

windows, quasi-stationary behaviour can be observed in 

each window. Thus, future behaviour of the vibration 

signal can be predicted separately in small windows 

under the restriction that a different model is used for 

each window. 
In this approach, as illustrated in Fig. 4, the signal is 

divided into windows of equal length. Each window is 
coded into a feature vector, which consists of a set of 
linear prediction coefficients for that window. The 
feature vectors for all windows are combined together to 

form a feature matrix. We will interchangeably use 
observation matrix and feature matrix throughout the 
rest of the study. In this way, the vibration signal is a 
feature or observation matrix, which will then be used 
for training the models. 

The observation matrix is O = [o1|o2|o3…oT-1|oT], 

where the oi is the vector of linear prediction 

coefficients for i-th window signal. 

 

Identification results: The whole training and test time 

series was 1600 points samples. The time series is 

divided into the window of 256 points sample. The 

feature vector is extracted from the window signal. 8, 

12, 16 and 24 orders coefficients are used for features. 

The identification accuracies are shown in Table 1. 

 

CONCLUSION 

 

In this study, we propose a novel hybrid approach 

by integrating PCA and SVR for chatter recognition. 

The original inputs are firstly transformed into nonlinear 

principal components using PCA. Then these new 

features are used as the inputs of SVM to solve the 

cutting chatter recognition. By learning and training, we 

use the data of this subset to find interrelationship of 

input and output and get the solution by the PCA-SVM. 

This method has better convergence ability and strong 

global search ability, which consumes less time and 
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better extensive capability than traditional methods on 

chatter recognition.   
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