
Research Journal of Applied Sciences, Engineering and Technology 5(19): 4691-4694, 2013
DOI:10.19026/rjaset.5.4303
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2013 Maxwell Scientific Publication Corp.

Submitted: September 26, 2012 Accepted: December 11, 2012 Published: May 10, 2013

Corresponding Author: Yuqiang Sun, International Institute of Ubiquitous Computing, Chang Zhou University, Chang Zhou
213164, China

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

4691

Research Article
The PSRS Algorithm based on Synchronous Barrier

Yuqiang Sun, Huanhuan Cai, Xian Chang, Xin Gao and Yuwan Gu

International Institute of Ubiquitous Computing, Chang Zhou University, Chang Zhou 213164, China

Abstract: The biggest characteristic of LogGP model based on LogP mode is sending long messages, if all the
elements to be sent are seem as a long message and sent in a single processor, a sorting algorithm should be
introduced to merge those elements, but the algorithm designed in the LogP mode is heavily dependent on the
accuracy of parameters such as l, o, g, p. However, parameters are often inaccurate in reality. This may lead to
message traffic congestion in the transfer process and the degradation of Communication performance of system.
Therefore, this study proposes a new algorithm, that is, synchronization barrier is introduced into PSRS algorithm,
which can improve LogGP Model further. Network congestion will be avoided when sending a long message and
system performance will be improved .The barrier synchronization method can be applied to other algorithms of
LogGP model, so it has a certain practicality.

Keywords: LogGP model, PSRS, sorting algorithm, synchronization barriers

INTRODUCTION

Now many parallel computers provide special

support for processing long messages, so a new model
called LogGP was formed by introducing processing of
long messages into LogP model. Compared with LogP
model, the LogGP introduced an extra parameter G,
which represents spacing of every word of long
messages, that is, the time needed for sending long
messages byte by byte. Its count backwards was
corresponding to the bandwidth of long messages sent
by the processors. In order to send all elements as a long
message in a single processor, we should introduce a
sorting algorithm to combine the elements. But the
algorithm designed under the LogGP model relied
heavily on accuracy of parameters such as l o, g, p.
However the actual parameters is often not accurate,
which could cause communication congestion in the
process of transmitting messages, reduce
communication performance of the system and make the
actual operation results of the algorithm very different
from original designed expectations. Therefore, this
study proposes a new algorithm, that is, synchronization
barrier is introduced into PSRS algorithm, which can
improve LogGP Model further. Network congestion will
be avoided when sending a long message and system
performance will be improved, the barrier
synchronization method can be applied to other
algorithms of LogGP model, so it has a certain
practicality. Hoefler et al. (2009) analyse the LogGP in
theory and practice-An in-depth analysis of modern
interconnection networks and benchmarking methods

for collective operations. Zheng and Wang (2003) have
a analysis of Parallel computing model LogGP. Shuwei
et al. (2008) have a research of the barrier
synchronization for cell multi-processor architecture.
Yang et al. (2008) have a research of the parallel 0-1
programming algorithm based on improved PSRS.
Wang and Qiu (2005) study a new Algorithm for
Parallel mergesorting. Ding et al. (1999) study the
parallel merging algorithm based on MPP.

THE INTRODUCTION AND ROLE OF
BARRICADES SYNCHRONIZATION

The idea of barricades synchronization: There is a
common phenomenon-synchronous phenomenon in the
parallel processing system. As is shown in Fig. 1, N
processes P1, P2…Pn run on the different processors
respectively, when one of these processes arrives at the
point of interaction in Fig. 1, it should wait for all other
processes until they get to this interactive point and then
they can continue to go down. How to effectively
coordinate the parallel computing of each process
(subtask) is an important factor, which directly affect the
implementation performance of the entire system. A
synchronous technology based on the sharing storage
model is often used in many parallel processing systems;
it coordinates parallel computing by setting synchronous
barricades. An application process can set many
synchronous barricades points to coordinate parallel
computing steps. The main idea of the barricade
synchronization method is that all processes can
continue to execute until they arrive at synchronous

Res. J. Appl. Sci. Eng. Technol., 5(19): 4691-4694, 2013

4692

Fig. 1: Synchronous phenomenon

interaction point. If some of these processes can’t arrive
at the point for some reasons, we should set up
barricades to prevent reached processes from continue
execution.

The realization way of the barricade: When
implementing barricades algorithm specifically, we need
to consider each process how to know the
synchronization barricades information of other
processes. For example, how many processes have
arrived at synchronization barricade point at one time,
one of the simplest methods is to use centralized way,
which uses a global shared variable to record this
information and then each process executing the
algorithm can test and set this shared variable. The
advantage of this method is simple, but when the
number of the processors is large, it must cause
communication block of the system BUS (MIMD-BUS
model) or processor/memory Internet network (MIMD-
MIN model). Another improved method is using the
"combination" trees, its basic idea is to divide the
processor into groups and assign a leaves (equivalent to
a shared variables) for each group, so each processor
only to test and set the leaves corresponding to its group.
If we find that it is already the last processor that
changes the state of leaves, then we can deliver final
results of state of leaves to their fathers. In turn on, the
last processor arriving at the synchronous point delivers
the results to the node of the root; this can reduce system
overhead caused by continuously system competition
for a shared variable in "centralized" method. In
addition, it is a technology based on "binary tree
competition” that can realize the barricades. In order to
discuss simply, this study uses "centralized" method to
access to a shared state variable.

The benefits of introducing barricade
synchronization mechanism: There are at least two
benefits of introducing barricade synchronization
mechanism:

• When the capacity of receiving messages of a node
arrived at the network capacity constraints, we can

separate the messages sent to the same node
continually to avoid network congestion.

We can use global flow control, which can make

sending and receiving speed of the whole network
match. This can improve the performance of the system
and to further improve the efficiency of the algorithm.

ALGORITHM DESIGN

PSRS algorithm: PSRS (Parallel Sorting Regular
Sample) algorithm is parallel sorted in standard
sampling. It is a ranking method based on comparing
exchange of key words, it is suitable for distributed
computing environment and it has very good
characteristics of load balance and good local for
memory accessing.

PSRS algorithm by introducing of synchronous
barricades: The basic thoughts of the PSRS algorithm

based on synchronization barricade are as follows:As is
known from the original PSRS algorithm, not until step
3 sends p period of orderly data to step 4, can step 4
merge do p road merge, so here is a problem, the p
period of orderly data sequence certainly won't be
arrived at the same time, if a data series comes and do a
merge sorting at the same time, it will have low time
efficiency and will also waste space resources. If a lot of
data sequences come suddenly, they will cause
information communication congestion in the process of
delving messages. So, this study considers inserting a
barricade synchronous algorithm between step 3 and
step 4, namely p period of orderly data sequence must
gain synchronous interaction Point (Interactive Point),
which is the processor p0 in this place, then we can
continue to execute step 4. If some of these processes
can’t arrive at the point for some reasons, we should set
up barricades to prevent reached processes from
continue execution. The improved algorithm is as
follows:

Suppose the number of data is n, the number of
processor is p and n data evenly distributed on p

P1
P2 P3

……

Result1 Result2
Result n

Synchronous interactive point

Res. J. Appl. Sci. Eng. Technol., 5(19): 4691-4694, 2013

4693

Table 1: Comparison of incorporated times of improved and non-improved algorithm

The number of arrived processes Incorporated times in non-improved algorithm Incorporated times in improved algorithm

3~4 5 2
5~8 17 3
9~16 44 4
…
…
…

…
…
…

…
…
…

processors, the PSRS algorithm can be divided into the
following several steps:

Step1: Each processor gets a good sort of sequence by

doing quick sort for own n/p data
Step 2: Each processor selects (p-1) data (w, 2w, 3w…

(p-1) w) as delegate elements from sorted
series, among them w = n/p2

Step 3: Each processor will choose good delegate
element and send it to the processor p0

Step 4: Setting up synchronous barricades, not until P
period of orderly sequence arrive at processor
p0, can we carry the next operation

Step 5: Processor p0 will merge into p period of orderly
data sequence sent from step 3, then choose (p-
1) main elements from sorted data, the main
elements are p-1, 2(p-1), (p-1)(p-1)

Step 6: Processor p0 will broadcast the (p-1) main
elements to all processors

Step 7: Each processor will divide the n/p data into p
segments according to the p-1 main elements
sent from step 6, remember Wij as the (j + 1)
segment of processor p, among them, i = 0,
1…p-1

Step 8: Each processor will delivered the (i+1) segment
to processor pi, then make the i processor has
the i segment data of all processors, (i=0,1…p-
1)

Step 9: Each processor sort data sent from step 8
through p road merge sort, thus making n data
more orderly.

The false code of Barricade synchronization

algorithm is as follows:

Shared integer: count = 0/*count is an integer shared
variables used to record processes arrived at this
barricade, the initial value is 0 */
Shared Boolean: g = true/* g is a logical shared variable
*/
Private Boolean: l = true/* logical variable local to each
process */ Adaptive Barrier () l = not l;/ * Each process
changes the state of local variables, which is also an
initial value of the next barricade ,waking up blocking
process */if fetch-and-increment(count) = numb-
process-1 then initia-next();wake up();/*Setting an
initial value for the next synchronous algorithm and
waking up blocking process */
else for test-time = 1 to TestTime do /* testing g in the
period of Test Time */ if g =l then exit barrier
();/*entering to the next step until all processes arrive at
the synchronous points */

Algorithm performance analysis between the
improved and non-improved: The time spent on step
3 and step 4 of non-improved algorithm mainly consists
of two parts:

Interval time between two arrived adjacent
processes in the p processes is t1, t2,…t (p-1),

remember T1=t1+t2+…t（p-1; (2) the merging time of
non-improved algorithm is calculated as follows: every
time a new process comes, the whole process will do a
merge sort, this will waste a lot of time, Comparison of
incorporated times of improved and non-improved
algorithm is shown in Table 1:

We can see from Table 1, the execution of merging
time of improved algorithm are much less than that of
non-improved algorithm, so the time complexity of
improved merging algorithm is O nlog n), while the
time complexity of non-improved merging algorithm is
O (nlogn+nlog2). So the total time complexity of non-
improved algorithm is O (nlogn+nlog2+T1), that is O
(nlogn+nlog2+ t1+t2+…t (p-1)):

• The time spent on step 3 and step 4 of improved
algorithm also consists of two parts:

• we can use an average time to compute cycle
testing time, which used for setting barricades to
wait for all processors’ arrival, namely T1’ = 1/(p-

1)*(t1+t2+…t（p-1))

• Incorporated time needed by the improved

algorithm. So total time complexity is O (logn n

+ T1’), namely O (logn n+1/(p-1)*(t1+t2+…t

(p-1)))

• The time complexity of improved algorithm is less
than that of non-improved algorithm.

CONCLUSION

As the algorithm designed in the LogP mode is

heavily dependent on the accuracy of parameters such
as l, o, g, p, while parameters are often inaccurate in
reality. This may lead to message traffic congestion in
the transfer process and the degradation of
Communication performance of system. Therefore, this
study takes a specific algorithm called PSRS ($)
algorithm on the model of LogGP for example and
propose an improved algorithm, which introduces
barricade synchronization mechanism based on PSRS
algorithm to further improve the LogGP model, to
avoid network congestion when sending long messages,
to improve the performance of the system and improve
the efficiency of the algorithm. The barrier
synchronization method can be applied to other

Res. J. Appl. Sci. Eng. Technol., 5(19): 4691-4694, 2013

4694

algorithms of LogGP model, so it has a certain
practicality.

ACKNOWLEDGMENT

Supported by The project of general office of

Broadcasting and Television (GD10101) and Natural
Science Fund in JiangSu (BK2009535) and Natural
Science Fund in ZheJiang (Y1100314)

REFERENCES

Ding, W.Q., Y.C. Ji and G.L. Chen, 1999. A parallel

merging algorithm based on MPP. J. Comp. Res.
Dev., 36(1): 52-56.

Hoefler, T., T. Schneider and A. Lumsdaine, 2009.
LogGP in theory and practice-An in-depth analysis
of modern interconnection networks and
benchmarking methods for collective operations.
Simul. Mod. Pract. Theory, 17: 1511-1521.

Shuwei, B., Z. Qingguo, Z. Rui and L. Lian, 2008.
Barrier Synchronization for CELL Multi-Processor
Architecture. Distributed and Embedded System
Lab, SISE, Lanzhou University, China.

Wang, W.Y. and C. Qiu, 2005. A new Algorithm for
Parallel mergesorting.

Yang, L., J. Jain and T. Li, 2008. Parallel algorithm of
MCQoS routing based on improved PSRS and
binary search. Proceedings of the International
Conference on Advanced Infocomm Technology,
New York, ISBN: 978-1-60558-088-3.

Zheng, W.K. and X.D. Wang, 2003. Analysis of
Parallel Computing Model Log GP.

