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Abstract: SIP (Session Initiation Protocol) has been chosen as the core signaling protocol of the NGN (Next 
Generation Network), but the large SIP message which is text-based is an obstacle with the planned usage of SIP in 
wireless mobile networks. Based on the SigComp (Signaling Compression) framework, some further improvements 
are made to the Deflate algorithm according to the characteristics of SIP in this study. Experiments show that the 
improved Deflate algorithm can compress the SIP message greatly and reduce the bandwidth requirements signally, 
so it is highly valued in IMS (IP Multimedia Subsystem), PTT (Push To Talk) and other wireless real-time SIP 
applications. 
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INTRODUCTION 

 
SIP

 
is developed by IETF to set up, modify and 

terminate sessions for multimedia communication 
(Rosenberg et al., 2002). Because of its convenience to 
implement, diagnose and extend, SIP has been chosen 
as the core signaling protocol of the NGN. Now, SIP is 
used widely and it still keeps on being updated and 
improved. However, SIP is text-based application 
protocol and it was originally engineered for bandwidth 
rich links. So, its messages have not been optimized in 
terms of size and the large SIP messages become an 
obstacle with the planned usage of SIP in wireless 
mobile networks.  

The networks such as 2.5G, 3G or Wi-Fi are all 
shared wireless mobile networks. One single user only 
has very limited bandwidth in the peak of the networks 
or when many network applications are running. Right 
now, the large SIP messages will consume too much 
bandwidth and memory and also cause higher session 
setup delay. The higher session setup delay means the 
lower QoS(Quality of Service) of the real-time SIP 
applications(e.g., IMS and PTT). 

The session setup delay mainly depends on 
message length (Wen et al., 2011) and compressing 
messages can improve the transmission performance 
and reduce the delay. So, 3GPP release 5 requires that 
SIP messages should be compressed before 
transmission in the wireless mobile networks.  

For a better utilization of text-based application 
protocols  (e.g.,  SIP), IETF  defines  SigComp  (Price 
et al., 2003) as a new layer between the application and  

the underlying transport. SigComp can offer robust, 
lossless compression and decompression of application 
messages. The compression efficiency of SigComp 
largely depends on the selected compression algorithm, 
compression mechanisms and compression/ 
decompression memory size. In this study, we mainly 
study the compression algorithm.  
 

SIGCOMP ARCHITECTURE AND THE 
CHARACTERISTICS OF SIP 

 
SigComp architecture: For now, the main SigComp 
research organizations are 3GPP and IETF ROHC 
(Robust Header Compression) (Li, 2009) which have 
released a number of relevant standards. With the wide 
usage of the text-based application protocols in wireless 
mobile networks, SigComp has been increasingly 
concerned and emphasized. SigComp supports a wide 
range of compression algorithms and transports (e.g., 
TCP, UDP and SCTP) and its architecture is illustrated 
in Fig. 1. 

SigComp consists of Compressor Dispatcher, 
Compressor, Decompressor Dispatcher, UDVM 
(Universal Decompressor Virtual Machine) and State 
Handler. During the compression process, the 
Compressor Dispatcher receives the messages with 
compartment identifier from local application and 
invokes a particular Compressor according to the 
compartment identifier; the Compressor compresses the 
messages by utilizing a certain compression algorithm 
and accessing existing state and returns SigComp 
messages to the Compressor Dispatcher; the 
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Fig. 1: SigComp architecture 

 

Compressor Dispatcher then forwards the SigComp 

messages to the remote endpoint. During the 

decompression process, the Decompressor Dispatcher 

receives the SigComp messages and invokes an 

instance of the UDVM; the UDVM decompresses the 

SigComp messages by utilizing the corresponding 

decompression algorithm and accessing existing state 

and returns the decompressed messages to the 

Decompressor Dispatcher; the Decompressor 

Dispatcher then forwards the resulting decompressed 

messages to local application, which may return a 

compartment identifier in order to update state. 

 

The characteristics of SIP: SIP is a text-based 

protocol that uses the UTF-8 charset. A SIP message is 

either a request from a client to a server, or a response 

from a server to a client. Both types of messages consist 

of a start-line, one or more header fields, an empty line 

indicating the end of the header fields and an optional 

SDP (Session Description Protocol) message-body.  

 

Message = start-line (Request-Line/Status-Line)  

*message-header 

CRLF 

[message-body] 

 

The start-line, each message-header line and the 

empty line must be terminated by a Carriage-Return 

Line-Feed sequence (CRLF). Note that the empty line 

must be present even if the message-body does not 

exist. (Rosenberg et al., 2002)  

By analyzing the literature (Johnston et al., 2003), 

we can see that SIP messages have three characteristics: 

 

• The format of the message is fixed, but its size is 

not. A typical SIP message ranges from a few 

hundred bytes up to two thousand bytes or more. It 

consists of SIP instructions and user data and SIP 

instructions (e.g.,“SIP”, “From” and “To”) 

frequently appear in each SIP message. 

• During the same session process, a large quantity 
of redundancy exists among SIP messages 
(requests/responses). For example, each SIP 
message has the same value of URI, IP and Call-
ID. 

• SIP header accounts for the majority of the size of 
the SIP message.  

 

DEFLATE ALGORITHM 
 

SIP is a text-based protocol, so it needs lossless 
compression. The lossless compression algorithm (e.g., 
Huffman, RLE, LZ and Arithmetic) (Li and Yang, 
2010) compresses messages by reducing redundancy 
among messages. Deflate performs best among the 
common lossless compression algorithms (Jin and 
Mahendran, 2005) and it was specified in RFC1951. 
So, we choose Deflate as the basic compression 
algorithm in this study. 

Deflate is a dual compression algorithm and it 
combines LZ77 algorithm and Huffman coding. Today, 
there are many software implementations such as 
PKZIP, zlib and 7-Zip/AdvanceCOMP (Alireza and 
Mahmoud, 2011). 
 
LZ77 Algorithm: LZ77 algorithm has low 
compression ratio and it is ideally suited to compress 
the real-time messages (Tian, 2010).

 
LZ77 is sometimes 

called sliding window algorithm and it maintains two 
buffers (Fig. 2): Historical Buffer and Forward Buffer. 
The former keeps the data existing earlier in the input 
(uncompressed) data stream and the latter keeps the 
current data that is about to be compressed.  

LZ77 algorithm achieves compression by trying to 
search the match of current data of Forward Buffer and 
replacing the current data with a pointer to the match 
from Historical Buffer. If the match exists, LZ77
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Fig. 2: LZ77 compression process 

 
algorithm continues to search the longest match and it 
outputs the pointer of the longest match in the form like 
(off, len). At the same time, the current data moves into 
Historical Buffer and the len long earliest data of 
Historical Buffer moves out. If the match does not 
exist, LZ77 algorithm outputs the current 
(uncompressed) data. At the same time, the one current 
data moves into Historical Buffer and the one earliest 
data of Historical Buffer moves out. In order to 
optimize the search time, Deflate algorithm uses a hash 
table to maintain and organize Historical Buffer.  

LZ77 algorithm sets the first bit as a flag to 
distinguish the raw data from the (off, len) pair. Flag = 
0 indicates the raw data and Flag = 1 indicates the (off, 
len) pair. 

LZ77 decompression algorithm is very simple. It 
also maintains a sliding window and gets the raw data 
from compressed data according to the (off, len) pair.  
 
Huffman Coding: Huffman coding is an entropy 
encoding algorithm and it expresses the most common 
source symbols using shorter strings of bits than the 
less common source symbols. The core work of the 
Huffman coding is to build Huffman Tree (also called 
Optimal Binary Tree). 

Huffman coding is the first truly practical coding 
method with high efficiency and it is also quite easy to 
meet the requirement. But, Huffman coding has not 
reliability protection mechanisms. For example, even 
just one bit error can cause a train of errors (called 
Error Propagation) during the Huffman decoding 
process (Li, 2009).  
 

IMPROVEMENTS TO DEFLATE 
 

In order to enhance the compression efficiency of 
SIP, some further improvements are made to the 
Deflate algorithm: 

 

• Pre-loading data: The SIP/SDP Static Dictionary 
specified by the standard (Garcia-Martin et al., 
2003) is pre-loaded as a Sig Comp state and the 
REGISTER message is pre-loaded into the 
Historical Buffer of LZ77 after SIP application 
registers successfully. The Static Dictionary is a 
collection of well-known strings that appear in the 
most of the SIP/SDP messages. The REGISTER 
message also contains very important information 
such as the value of user URI and IP. So, pre-
loading data is very useful to compress SIP 
messages especially the first several messages.  

• Building the User-specific Dictionary and SIP 
Phrases Frequency Table: Both sent and 
received SIP (uncompressed) messages move into 
the Historical Buffer as the sliding dictionary 
during the session setup process. Meanwhile, SIP 
Phrases Frequency Table is built to record the 
frequency of the SIP phrases (except the phrases 
that appear in the Static Dictionary). If the 
frequency of one phrase increases to a certain 
value, the phrase will be saved as a Sig Comp 
state. In addition, the phrases with the lowest 
frequency must move out if the Frequency Table 
is full. A large quantity of redundancy exists 
between SIP requests and responses in the same 
session, so saving both sent and received SIP 
(uncompressed) messages is necessary. The SIP 
Phrases Frequency Table is very important to 
build a high-efficiency dictionary for LZ77 
algorithm and it is also useful to build Huffman 
Tree for Huffman coding.  

• Regularly updating Huffman Tree: We set a 
variable “F” as the flag and “F” reduces by one 
for every Huffman coding. When “F” reduces to 
zero, the Huffman Tree will be updated and then 
“F” is set to n. Regularly updating Huffman Tree 
can avoid frequently updating Huffman Tree and 
it also signally reduces the system overhead and 
coding time.  

• A simple error detection and handling 
mechanism: SIP application detects whether the 
value of Call-ID of every received message is 
right during the same session. If the value is 
wrong, Sig Comp will initialize the Deflate 
immediately. That is, Sig Comp empties the 
Historical Buffer, SIP Phrases Frequency Table 
and Huffman Tree and frees the state mentioned 
in (ii). At the same time, SIP application sends a 
SIP error message to the remote endpoint and the 
remote endpoint also initializes the Deflate 
immediately after receiving the SIP error 
message. The error mentioned here only comes 
from Sig Comp rather than the raw SIP message. 
The error must be handled, or else it will cause 
Error Propagation and retransmission. The value 
of Call-ID is unique and remains unchanged 
during the same session, so it can act as the 
detection string. 
 

The   improved   Deflate   compression   process     
is     illustrated    in    Fig. 3.   The    improved    Deflate  
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Fig. 3: The improved deflate compression process 

 
decompression is simple, so we no longer give 
unnecessary details here. 

 
PERFORMANCE ANALYSIS 

 
To validate the performance of the improved 

Deflate, a simple session scene (Fig. 4) is constructed. 
During the session, X-Lite1 and X-Lite2 softwares act 
as the SIP clients and Mini Sip Server software acts as 
the SIP server. In addition, Wireshark software captures 
the sequence of SIP messages. The SIP messages are 
compressed using Deflate algorithm, Deflate+Static 
Dictionary algorithm (DefDic for short) and the 
improved Deflate algorithm (ImpDef for short). The 
compression results of every SIP message are shown in 
Table 1 and Fig. 5 and the several compression ratios of 
the total messages separately sent by X-Lite1, X-Lite2 
and MiniSipServer are shown in Table 2. 
 
The analysis of the results is as follows:  
 

• As shown in the Table 2, ImpDef has the lowest 
total  compression ratio among the three algorithms 

 
 

Fig. 4: A simple session setup process 

 

 

 

Fig. 5: Compression ratio of every SIP message 

 
Table 1: The compression results 

Number 
Message 
(byte) 

Deflate 
(byte) 

DefDic 
(byte) 

ImpDef  
(byte) 

1 1024 1057 851 389 

2 393 614 516 48 
3 800 436 357 144 

4 287 516 452 44 

5 394 115 98 48 
6 507 50 45 40 

7 781 323 248 74 

8 793 64 61 37 
9 645 65 63 57 

10 383 81 79 32 

Sum 6007 3321 2770 913 

 
Table 2: The compression ratios for senders 

Sender Deflate (%) DefDic (%) ImpDef (%) 

X-Lite1 67.23 54.76 26.72 

MiniSip server 43.29 36.79 10.47 
X-Lite2 65.25 54.58 11.35 

The total 55.29 46.11 15.20 

 

Due to the Static Dictionary, the DefDic’s 

compression ratio is lower 9.18% than Deflate. 

But, ImpDef has the more and the higher efficient 

dictionary resource, so its compression ratio can be 

as low as 15.2%.  

• As shown in the Fig. 5, ImpDef performs best 

among the three algorithms in compressing the first 

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10

C
o
m

p
re

ss
io

n
 R

at
io

 (
%

)

Message Number

Deflate
DefDic
ImpDef



 

 

Res. J. Appl. Sci. Eng. Technol., 5(22): 5320-5324, 2013 

 

5324 

SIP messages (number 1, 2 and 4) sent separately 

by X-Lite1, MiniSipServer and X-Lite2. When 

compressing the first SIP message, Desflate has not 

any dictionary resource; and besides, it must add 

some additional information such as bytecodes and 

flag bits to the compressed message. As a result, 

Deflate performs worst and even its compressed 

message is longer than the raw message. Due to the 

Static Dictionary, the DefDic performs a little 

better than Deflate, but it is far from enough. 

ImpDef has enough dictionary resource by pre-

loading data, so it performs best.  

• According to the Fig. 4 and 5 and Table 2, we can 
see that the more messages the sender sends, the 
better Deflate and DefDic perform. For example, 
MiniSipServer sends the most messages in the 
session and the total compression ratio of its 
messages is lowest. Similarly, the more messages 
the sender sends and receives, the better ImpDef 
performs. But, the Compression ratio of the three 
algorithms changes more smoothly (especially 
when Historical Buffer is full) at the same time. 
However, the Compression ratio of ImpDef 
changes still faster than Deflate and DefDic due to 
its increasingly efficient dictionary.  

• The results mentioned above are got on the 
condition that no error occurs during the 
compression/decompression process. If not, all the 
three algorithms would perform badly. However, 
ImpDef would still perform best among the three 
algorithms due to its simple error detection and 
handling mechanism. On the contrary, the error 
might cause Error Propagation or session setup 
failure during the compression/decompression 
process of Deflate or DefDic. 

 
CONCLUSION 

 
In general, wireless real-time SIP applications 

(e.g., IMS and PTT) require the session setup to be 
finished instantaneously. So, the large SIP messages 
should be compressed before transmission to reduce 
session setup delay. 

In this study, we deep analyze the SigComp 
architecture, Characteristics of SIP and Deflate 
algorithm and give some further improvements to the 
Deflate algorithm. The test results prove that the 
improved Deflate algorithm can compress the SIP 
messages greatly and reduce the bandwidth 
requirements signally. So it is highly valued in the 
wireless real-time SIP applications and also has some 
reference for compressing other text-based protocols 
such as RTSP (Real Time Streaming Protocol). 
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