
Research Journal of Applied Sciences, Engineering and Technology 5(22): 5320-5324, 2013

DOI:10.19026/rjaset.5.4284

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: January 10, 2013 Accepted: January 31, 2013 Published: May 25, 2013

Corresponding Author: Derong Du, School of Electric Engineering and Automation, Guilin University of Electronic

Technology, Guilin 541004, China
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

5320

Research Article
Research of SIP Compression Based on SigComp

1
Derong Du,

2
Jianming Liu,

1
Hongzhou Li and

1
Zhiyong Peng

1
School of Electric Engineering and Automation,

2
School of Computer Science and Engineering, Guilin University of Electronic Technology,

 Guilin 541004, China

Abstract: SIP (Session Initiation Protocol) has been chosen as the core signaling protocol of the NGN (Next
Generation Network), but the large SIP message which is text-based is an obstacle with the planned usage of SIP in
wireless mobile networks. Based on the SigComp (Signaling Compression) framework, some further improvements
are made to the Deflate algorithm according to the characteristics of SIP in this study. Experiments show that the
improved Deflate algorithm can compress the SIP message greatly and reduce the bandwidth requirements signally,
so it is highly valued in IMS (IP Multimedia Subsystem), PTT (Push To Talk) and other wireless real-time SIP
applications.

Keywords: Deflate, SigComp, sip, wireless mobile network

INTRODUCTION

SIP

is developed by IETF to set up, modify and

terminate sessions for multimedia communication
(Rosenberg et al., 2002). Because of its convenience to
implement, diagnose and extend, SIP has been chosen
as the core signaling protocol of the NGN. Now, SIP is
used widely and it still keeps on being updated and
improved. However, SIP is text-based application
protocol and it was originally engineered for bandwidth
rich links. So, its messages have not been optimized in
terms of size and the large SIP messages become an
obstacle with the planned usage of SIP in wireless
mobile networks.

The networks such as 2.5G, 3G or Wi-Fi are all
shared wireless mobile networks. One single user only
has very limited bandwidth in the peak of the networks
or when many network applications are running. Right
now, the large SIP messages will consume too much
bandwidth and memory and also cause higher session
setup delay. The higher session setup delay means the
lower QoS(Quality of Service) of the real-time SIP
applications(e.g., IMS and PTT).

The session setup delay mainly depends on
message length (Wen et al., 2011) and compressing
messages can improve the transmission performance
and reduce the delay. So, 3GPP release 5 requires that
SIP messages should be compressed before
transmission in the wireless mobile networks.

For a better utilization of text-based application
protocols (e.g., SIP), IETF defines SigComp (Price
et al., 2003) as a new layer between the application and

the underlying transport. SigComp can offer robust,
lossless compression and decompression of application
messages. The compression efficiency of SigComp
largely depends on the selected compression algorithm,
compression mechanisms and compression/
decompression memory size. In this study, we mainly
study the compression algorithm.

SIGCOMP ARCHITECTURE AND THE
CHARACTERISTICS OF SIP

SigComp architecture: For now, the main SigComp
research organizations are 3GPP and IETF ROHC
(Robust Header Compression) (Li, 2009) which have
released a number of relevant standards. With the wide
usage of the text-based application protocols in wireless
mobile networks, SigComp has been increasingly
concerned and emphasized. SigComp supports a wide
range of compression algorithms and transports (e.g.,
TCP, UDP and SCTP) and its architecture is illustrated
in Fig. 1.

SigComp consists of Compressor Dispatcher,
Compressor, Decompressor Dispatcher, UDVM
(Universal Decompressor Virtual Machine) and State
Handler. During the compression process, the
Compressor Dispatcher receives the messages with
compartment identifier from local application and
invokes a particular Compressor according to the
compartment identifier; the Compressor compresses the
messages by utilizing a certain compression algorithm
and accessing existing state and returns SigComp
messages to the Compressor Dispatcher; the

Res. J. Appl. Sci. Eng. Technol., 5(22): 5320-5324, 2013

5321

Fig. 1: SigComp architecture

Compressor Dispatcher then forwards the SigComp

messages to the remote endpoint. During the

decompression process, the Decompressor Dispatcher

receives the SigComp messages and invokes an

instance of the UDVM; the UDVM decompresses the

SigComp messages by utilizing the corresponding

decompression algorithm and accessing existing state

and returns the decompressed messages to the

Decompressor Dispatcher; the Decompressor

Dispatcher then forwards the resulting decompressed

messages to local application, which may return a

compartment identifier in order to update state.

The characteristics of SIP: SIP is a text-based

protocol that uses the UTF-8 charset. A SIP message is

either a request from a client to a server, or a response

from a server to a client. Both types of messages consist

of a start-line, one or more header fields, an empty line

indicating the end of the header fields and an optional

SDP (Session Description Protocol) message-body.

Message = start-line (Request-Line/Status-Line)

*message-header

CRLF

[message-body]

The start-line, each message-header line and the

empty line must be terminated by a Carriage-Return

Line-Feed sequence (CRLF). Note that the empty line

must be present even if the message-body does not

exist. (Rosenberg et al., 2002)

By analyzing the literature (Johnston et al., 2003),

we can see that SIP messages have three characteristics:

• The format of the message is fixed, but its size is

not. A typical SIP message ranges from a few

hundred bytes up to two thousand bytes or more. It

consists of SIP instructions and user data and SIP

instructions (e.g.,“SIP”, “From” and “To”)

frequently appear in each SIP message.

• During the same session process, a large quantity
of redundancy exists among SIP messages
(requests/responses). For example, each SIP
message has the same value of URI, IP and Call-
ID.

• SIP header accounts for the majority of the size of
the SIP message.

DEFLATE ALGORITHM

SIP is a text-based protocol, so it needs lossless
compression. The lossless compression algorithm (e.g.,
Huffman, RLE, LZ and Arithmetic) (Li and Yang,
2010) compresses messages by reducing redundancy
among messages. Deflate performs best among the
common lossless compression algorithms (Jin and
Mahendran, 2005) and it was specified in RFC1951.
So, we choose Deflate as the basic compression
algorithm in this study.

Deflate is a dual compression algorithm and it
combines LZ77 algorithm and Huffman coding. Today,
there are many software implementations such as
PKZIP, zlib and 7-Zip/AdvanceCOMP (Alireza and
Mahmoud, 2011).

LZ77 Algorithm: LZ77 algorithm has low
compression ratio and it is ideally suited to compress
the real-time messages (Tian, 2010).

LZ77 is sometimes

called sliding window algorithm and it maintains two
buffers (Fig. 2): Historical Buffer and Forward Buffer.
The former keeps the data existing earlier in the input
(uncompressed) data stream and the latter keeps the
current data that is about to be compressed.

LZ77 algorithm achieves compression by trying to
search the match of current data of Forward Buffer and
replacing the current data with a pointer to the match
from Historical Buffer. If the match exists, LZ77

Res. J. Appl. Sci. Eng. Technol., 5(22): 5320-5324, 2013

5322

Fig. 2: LZ77 compression process

algorithm continues to search the longest match and it
outputs the pointer of the longest match in the form like
(off, len). At the same time, the current data moves into
Historical Buffer and the len long earliest data of
Historical Buffer moves out. If the match does not
exist, LZ77 algorithm outputs the current
(uncompressed) data. At the same time, the one current
data moves into Historical Buffer and the one earliest
data of Historical Buffer moves out. In order to
optimize the search time, Deflate algorithm uses a hash
table to maintain and organize Historical Buffer.

LZ77 algorithm sets the first bit as a flag to
distinguish the raw data from the (off, len) pair. Flag =
0 indicates the raw data and Flag = 1 indicates the (off,
len) pair.

LZ77 decompression algorithm is very simple. It
also maintains a sliding window and gets the raw data
from compressed data according to the (off, len) pair.

Huffman Coding: Huffman coding is an entropy
encoding algorithm and it expresses the most common
source symbols using shorter strings of bits than the
less common source symbols. The core work of the
Huffman coding is to build Huffman Tree (also called
Optimal Binary Tree).

Huffman coding is the first truly practical coding
method with high efficiency and it is also quite easy to
meet the requirement. But, Huffman coding has not
reliability protection mechanisms. For example, even
just one bit error can cause a train of errors (called
Error Propagation) during the Huffman decoding
process (Li, 2009).

IMPROVEMENTS TO DEFLATE

In order to enhance the compression efficiency of
SIP, some further improvements are made to the
Deflate algorithm:

• Pre-loading data: The SIP/SDP Static Dictionary
specified by the standard (Garcia-Martin et al.,
2003) is pre-loaded as a Sig Comp state and the
REGISTER message is pre-loaded into the
Historical Buffer of LZ77 after SIP application
registers successfully. The Static Dictionary is a
collection of well-known strings that appear in the
most of the SIP/SDP messages. The REGISTER
message also contains very important information
such as the value of user URI and IP. So, pre-
loading data is very useful to compress SIP
messages especially the first several messages.

• Building the User-specific Dictionary and SIP
Phrases Frequency Table: Both sent and
received SIP (uncompressed) messages move into
the Historical Buffer as the sliding dictionary
during the session setup process. Meanwhile, SIP
Phrases Frequency Table is built to record the
frequency of the SIP phrases (except the phrases
that appear in the Static Dictionary). If the
frequency of one phrase increases to a certain
value, the phrase will be saved as a Sig Comp
state. In addition, the phrases with the lowest
frequency must move out if the Frequency Table
is full. A large quantity of redundancy exists
between SIP requests and responses in the same
session, so saving both sent and received SIP
(uncompressed) messages is necessary. The SIP
Phrases Frequency Table is very important to
build a high-efficiency dictionary for LZ77
algorithm and it is also useful to build Huffman
Tree for Huffman coding.

• Regularly updating Huffman Tree: We set a
variable “F” as the flag and “F” reduces by one
for every Huffman coding. When “F” reduces to
zero, the Huffman Tree will be updated and then
“F” is set to n. Regularly updating Huffman Tree
can avoid frequently updating Huffman Tree and
it also signally reduces the system overhead and
coding time.

• A simple error detection and handling
mechanism: SIP application detects whether the
value of Call-ID of every received message is
right during the same session. If the value is
wrong, Sig Comp will initialize the Deflate
immediately. That is, Sig Comp empties the
Historical Buffer, SIP Phrases Frequency Table
and Huffman Tree and frees the state mentioned
in (ii). At the same time, SIP application sends a
SIP error message to the remote endpoint and the
remote endpoint also initializes the Deflate
immediately after receiving the SIP error
message. The error mentioned here only comes
from Sig Comp rather than the raw SIP message.
The error must be handled, or else it will cause
Error Propagation and retransmission. The value
of Call-ID is unique and remains unchanged
during the same session, so it can act as the
detection string.

The improved Deflate compression process
is illustrated in Fig. 3. The improved Deflate

Res. J. Appl. Sci. Eng. Technol., 5(22): 5320-5324, 2013

5323

Fig. 3: The improved deflate compression process

decompression is simple, so we no longer give
unnecessary details here.

PERFORMANCE ANALYSIS

To validate the performance of the improved

Deflate, a simple session scene (Fig. 4) is constructed.
During the session, X-Lite1 and X-Lite2 softwares act
as the SIP clients and Mini Sip Server software acts as
the SIP server. In addition, Wireshark software captures
the sequence of SIP messages. The SIP messages are
compressed using Deflate algorithm, Deflate+Static
Dictionary algorithm (DefDic for short) and the
improved Deflate algorithm (ImpDef for short). The
compression results of every SIP message are shown in
Table 1 and Fig. 5 and the several compression ratios of
the total messages separately sent by X-Lite1, X-Lite2
and MiniSipServer are shown in Table 2.

The analysis of the results is as follows:

• As shown in the Table 2, ImpDef has the lowest
total compression ratio among the three algorithms

Fig. 4: A simple session setup process

Fig. 5: Compression ratio of every SIP message

Table 1: The compression results

Number
Message
(byte)

Deflate
(byte)

DefDic
(byte)

ImpDef
(byte)

1 1024 1057 851 389

2 393 614 516 48
3 800 436 357 144

4 287 516 452 44

5 394 115 98 48
6 507 50 45 40

7 781 323 248 74

8 793 64 61 37
9 645 65 63 57

10 383 81 79 32

Sum 6007 3321 2770 913

Table 2: The compression ratios for senders

Sender Deflate (%) DefDic (%) ImpDef (%)

X-Lite1 67.23 54.76 26.72

MiniSip server 43.29 36.79 10.47
X-Lite2 65.25 54.58 11.35

The total 55.29 46.11 15.20

Due to the Static Dictionary, the DefDic’s

compression ratio is lower 9.18% than Deflate.

But, ImpDef has the more and the higher efficient

dictionary resource, so its compression ratio can be

as low as 15.2%.

• As shown in the Fig. 5, ImpDef performs best

among the three algorithms in compressing the first

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10

C
o
m

p
re

ss
io

n
 R

at
io

 (
%

)

Message Number

Deflate
DefDic
ImpDef

Res. J. Appl. Sci. Eng. Technol., 5(22): 5320-5324, 2013

5324

SIP messages (number 1, 2 and 4) sent separately

by X-Lite1, MiniSipServer and X-Lite2. When

compressing the first SIP message, Desflate has not

any dictionary resource; and besides, it must add

some additional information such as bytecodes and

flag bits to the compressed message. As a result,

Deflate performs worst and even its compressed

message is longer than the raw message. Due to the

Static Dictionary, the DefDic performs a little

better than Deflate, but it is far from enough.

ImpDef has enough dictionary resource by pre-

loading data, so it performs best.

• According to the Fig. 4 and 5 and Table 2, we can
see that the more messages the sender sends, the
better Deflate and DefDic perform. For example,
MiniSipServer sends the most messages in the
session and the total compression ratio of its
messages is lowest. Similarly, the more messages
the sender sends and receives, the better ImpDef
performs. But, the Compression ratio of the three
algorithms changes more smoothly (especially
when Historical Buffer is full) at the same time.
However, the Compression ratio of ImpDef
changes still faster than Deflate and DefDic due to
its increasingly efficient dictionary.

• The results mentioned above are got on the
condition that no error occurs during the
compression/decompression process. If not, all the
three algorithms would perform badly. However,
ImpDef would still perform best among the three
algorithms due to its simple error detection and
handling mechanism. On the contrary, the error
might cause Error Propagation or session setup
failure during the compression/decompression
process of Deflate or DefDic.

CONCLUSION

In general, wireless real-time SIP applications

(e.g., IMS and PTT) require the session setup to be
finished instantaneously. So, the large SIP messages
should be compressed before transmission to reduce
session setup delay.

In this study, we deep analyze the SigComp
architecture, Characteristics of SIP and Deflate
algorithm and give some further improvements to the
Deflate algorithm. The test results prove that the
improved Deflate algorithm can compress the SIP
messages greatly and reduce the bandwidth
requirements signally. So it is highly valued in the
wireless real-time SIP applications and also has some
reference for compressing other text-based protocols
such as RTSP (Real Time Streaming Protocol).

ACKNOWLEDGMENT

The authors wish to thank the help of the funds:

The National Natural Science Foundation of China

under Grant No.61262074 and No.61162008; Guangxi

Department of Education Fund, China (201204LX126,

201101ZD006); Open Project of Guangxi Key Lab of

Trusted Software, China (kx201101); Program for

Excellent Talents in Guangxi Higher Education

Institutions, China (201065).

REFERENCES

Alireza, Y. and R.H. Mahmoud, 2011. A simple

lossless preprocessing algorithm for hardware

implementation of deflate data compression.

Proceeding of IEEE 19th Iranian Conference on

Electrical Engineering (ICEE). Tehran, pp: 1-5.

Garcia-Martin, M., C. Bormann, J. Ott, R. Price and

A.B. Roach, 2003. The Session Initiation Protocol

(SIP) and Session Description Protocol (SDP)

Static Dictionary for Signaling Compression

(SigComp). IETF RFC3485, Retrieved from:

http://www.getrfc.ru/list/3481/3500/.

Jin, H. and A.C. Mahendran, 2005. Using SigComp to

compress SIP/SDP messages. Proceeding of IEEE

International Conference on Communications

(ICC), pp: 3107-3111.

Johnston, A., S. Donovan, R. Sparks, C. Cunningham

and K. Summers, 2003. Session Initiation Protocol

(SIP) Basic Call Flow Examples. IETF RFC3665,

Retrieved from: http://www.apps.ietf.org/rfc/rfc-

i3600.html.

Li, B. and F. Yang, 2010. SIP compression algorithm

based on SigComp. J. Comp. Appl., 30(4):

881-883.

Li, S., 2009. SigComp technology and its performance

analysis. M.A. Thesis, Nanjing University of Posts

and Telecommunications, China.

Price, R., C. Bormann, J. Christoffersson, H. Hannu, Z.

Liu and J. Rosenberg, 2003. Signaling

Compression (SigComp). IETF RFC3320,

Retrieved from: http://tools.ietf.org/html/draft-ietf-

rohc-sigcomp-sip-01.

Rosenberg, J., H. Schulzrinne, G. Camarillo, A.

Johnston, J. Peterson, R. Sparks et al., 2002. SIP:

Session Initiation Protocol. IETF RFC3261,

Retrieved from: http://tools.ietf.org/pdf/draft-ietf-

sip-rfc2543bis-08.pdf.

Tian, Y., 2010. The research and implementation of the

FPGA-based compression algorithm. M.A. Thesis,

Xidian University, China.

Wen, T., D. Zhang and Q. Guo, 2011. A new SIP

compression mechanism with pretreatment based

on SIGCOMP in IMS. Proceeding of International

Conference on Internet Technology and

Applications (ITAP). Wuhan, pp: 1-6.

