
Research Journal of Applied Sciences, Engineering and Technology 5(22): 5314-5319, 2013  

DOI:10.19026/rjaset.5.4283  

ISSN: 2040-7459; e-ISSN: 2040-7467 

© 2013 Maxwell Scientific Publication Corp. 

Submitted: November 08, 2012                       Accepted: January 05, 2013 Published: May 25, 2013 

 

Corresponding Author: He Xing, Xi’an Research Institute of Hi-Tech., Hongqing Town, Xi’an 710025, China 
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 

5314 

 

Research Article 
A Novel Fault Feature Extraction Method of Analog Circuit Based on Improved KPCA 

 
1
He Xing, 

1
Wang Hong-li, 

1
Lu Jing-hui and 

2
Sun Guo-qiang 

1
Xi’an Research Institute of Hi-Tech., Hongqing Town, Xi’an 710025, China 

2
Aviation University of Air Force, Changchun, 130022, China 

 

Abstract: The Kernel Principal Component Analysis (KPCA) extracts the principal components by computing the 
population variance, which doesn’t consider the difference between one class and the others. So, it makes against the 
fault diagnosis. For solving this problem, the study introduced Fisher classification function into The KPCA and 
proposed an improved FKPCA with the class information. Then, the algorithm was applied in analog-circuit fault 
feature extraction and the neural network was applied to diagnose the faults. The results indicate the classification 
effect of the principal components extracted by the algorithm is more better. It improves the rate of fault diagnosis 
and reduces the test time. 
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INTRODUCTION 

 
Feature extraction is one of the most important 

processes in fault diagnosis of analog circuits, so 
researches concern themselves about how to extract the 
feature efficiently, which result in lower computational 
cost and better result. Recently, the Kernel Principal 
Component Analysis (KPCA) method has been 
proposed for fault diagnosis, which is a novel nonlinear 
multivariate  statistical  analysis   method   (Scholkopf 
et al., 1998). KPCA was proposed to use for fault 
identification of process monitoring firstly(). The 
KPCA method has exhibited superior performance 
compared to the linear principal component analysis 
method in processing nonlinear systems (Cho et al., 
2005; Chin and Suter, 2007; Choi et al., 2005). The 
KPCA is a promising feature extraction method, which 
can eliminate the correlation of one feature and others 
and solve the problems such as oversize raw data 
dimension, unknown disturbances and low SNR(signal 
to noise ratio), etc (Scholkopf et al., 1999). However, 
there is a classification problem in the KPCA-
associated method. In the KPCA method, it analyses all 
samples as a whole, only considers the population 
variance instead of category information and class 
difference, which make the principal component 
extraction blind and partial (Xiao and He, 2011). 
Consequently, it could influence the fault diagnosis 
effect in practice. 

To solve the problem, the Fisher linear 
discriminant function is introduced, then, an improved 
KPCA, FKPCA (Fisher KPCA), is presented in this 
study, which reconstructs eigenvector projection space 
by minimizing between-class scatter and maximizing 

within-class scatter to make the extracted principal 
components consist of class information. Subsequently, 
the proposed FKPCA is used for fault feature extraction 
of analog circuit, in the end, the extracted fault feature 
are put into neural network for fault diagnosis. The 
numerical results show that the suggested approach can 
improve significantly the performance of fault 
diagnosis rate of neural network. 

The study is organized as follows. Section 2 
provides a brief presentation of KPCA. In Section 3, 
our proposed FKPCA is detailed introduced. Section 4 
presents numerical results for fault diagnosis of analog 
circuit using the FKPCA and neural network. Finally, 
Section 5 contains a discussion of the results as well as 
directions for future work. 
 

MATERIALS AND METHODS 
 
Brief review of KPCA: PCA is a powerful technique 
for extracting intrinsic structure from high dimensional 
data set (Bishop, 1995). However, PCA is a linear 
technique and cannot capture nonlinear structure in a 
data set. Therefore, nonlinear generalizations have been 
proposed and especially KPCA based on kernel theory 
was introduced for computing the principal components 
of the data set mapped nonlinearly into some high-
dimensional feature space. KPCA is a nonlinear PCA 
method. The implementation of KPCA seems to be 
equivalent to the implementation of the following 
process: all the samples are first transformed into a new 
space by using a nonlinear mapping. Then PCA is 
performed in the new space and extracts the lower 
dimensional features of samples in the new space. 
However, KPCA indeed does not need to explicitly 



 

 

Res. J. Appl. Sci. Eng. Technol., 5(22): 5314-5319, 2013 

 

5315 

perform the nonlinear mapping. Instead, KPCA 
implicitly obtains the nonlinear mapping by exploiting 
the kernel trick. This enables KPCA to have a 
promising computational cost in comparison with a 
general nonlinear feature extraction method. 

It is also seen that KPCA is an equivalent 

implementation of PCA in the feature space (i.e. the 

new space mentioned above). KPCA is briefly 

presented as follows. Let vectors x1, x2, …, xN be N 

training sample have been transformed into the feature 

space by a nonlinear function �. As a result, we can use 

�(x1) … �(xN) to denote the training samples in the 

feature space. If the samples in the feature space have 

zero mean, then the covariance matrix is: 

 

=1
( ) ( )1( )=

N T

i ii
x x

N
φ φφΓ ∑  

 

We also refer to  Г(�).as the generation matrix of 

the feature space. According to the PCA methodology, 

the most useful eigenvectors of the feature space should 

be the eigenvectors corresponding to large eigenvalues 

of Г(�).That is, the most useful eigenvectors should be 

the solutions ui corresponding to large λi of Г(�).ui = 

λiui. By exploiting the kernel function k(xi, xj) to denote 

the dot product, i.e., k(xi, xj) = �(xi)
T
 �(xi), the 

following eigenvalue equation can be derived 

(Scholkopf et al., 1997): 

 

=Kα λα                                                           (1) 

 

where K is the so-called Gram matrix that has the entry 

(K)ij = k (xi, xj), α is the eigenvector. The principal 

component analysis method based on the eigenvalue 

Eq. (1) is referred to as KPCA. 

 

Basic principle of the proposed FKPCA: First of all, 

definition Parameter. Before introducing the Fisher 

criterion function, some essential parameters are 

defined firstly (Wang et al., 2006). Setting fault sample 

as x ∈ R
n
, n is the dimension of raw feature set; c is the 

number of fault class, each class consists of Nj samples, 

where j = 1, 2, …, c and the sum of samples fulfil the 

condition:  ∑ ��
�
��� = �. 

P(wj) is the prior probability of training samples of 

the type j, wj denotes the j
th

 training sample; mj = 1/ Nj  

(mj ∈ R
n
) is the mean of training samples of the type j 

and m = 1/N ∑ 
�
�
���  (m ∈ R

n
) is the mean of population 

training samples; 

Population between-class scatter matrix marks with 

Sw, which can be calculated by Eq. (2): 

 

1

1 1

( )

1
( )( )

j

c

w j wj

j

Nc
T
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j i
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= − −
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∑∑

               (2) 

Population within-class scatter matrix marks with 

Sb, which can be calculated by Eq. (3): 
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                            (3) 

 

and population scatter matrix marks with St, which can 

be calculated by Eq. (4): 

 

1

1
( )( )

N
T

t w b i i

i

S S S x m x m
N =

= + = − −∑                      (4) 

 

The between-class scatter matrix represents 

diffusion condition of every sample points around their 

mean and the within-class scatter matrix represents the 

distribution of class distance, which all depend on the 

character and division of the sample class. But the 

population scatter matrix is independent of sample 

division and class character. The KPCA acquires 

projection space using the population scatter matrix 

with no class information; consequently, the principle 

components extracted by KPCA make the class very 

similar, which maybe bad for diagnose different type of 

fault. So, it is necessary to study how to introduce class 

information in the process of KPCA to improve the 

performance of diagnosis of different fault. 

Then, the basic ideas of improvement are 

introduced. the Fisher linear discriminant function can 

be acquired from (Bian and Zhang, 2009), which has 

the form as: 

 

( )
T

b
F T

w

w S w
J w

w S w
=                                           (5) 

 

it can see from the above equation that in order to 

obtain the best classification ability after projection, the 

bigger is the within-class scatter Sb and the less is the 

between-class scatter Sw, the better for classification 

result, in other words, the different types of samples 

should be dispersed as far as possible, meanwhile, the 

samples in the same type should be dense as near as 

possible. Consequently, this problem is reduced to 

calculate the corresponding value w
*
 of variable w, 

which makes the function JF(w) maximum. 

It can obtain the simplified form by using Lagrange 

multiplier method (Xiao and He, 2011) to solve Eq. (5): 

 

 
b wS w S wλ∗ ∗=                               (6) 

 

where w
*
 is the extremal solution. As Sw is nonsingular, 

Eq. (7) can be obtain by left multiply by S
-1

w on each 

side of Eq. (6): 
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1

w bS S w wλ− ∗ ∗=                                             (7) 

 

From Eq. (7), It could consider obtaining the 

extremum of JF(w) as solving the eigenvalue of the 

general matrix, S
-1

b Sb. See not hard, for Sw and Sb 

containing between-class information and within-class 

information respectively, if the population covariance 

matrix Г(∅) is replaced by S
-1

b Sb in KPCA, the 

eigenvalues would also include each class information. 

Consequently, it would make the projected sample 

easier to divide. 

After original sample space has been projected into 

eigenvector space, the following problem is how to 

obtain the between-class scatter matrix Sb and the 

within-class scatter matrix Sw in the process of KPCA. 

The detailed steps are given in the next section. 

Finally, according to the above analysis, the 

detailed achievement process of FKPCA can be 

obtained. When raw sample x subjects to non-linear 

mapping, the between-class scatter matrix S
Φ

w and the 

within-class scatter matrix S
Φ

b within eigenvector space 

are given as: 

1 1

1
( ( ) )( ( ) )

jNc
T

w i j i j

j i

S x m x m
N

Φ Φ Φ

= =
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where, 

 

1

1
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It can be seen from the above analysis, in the 

eigenvector space, the expression of Fisher criterion 

function becomes: 

 

( )
T

b
F T

w

w S w
J w

w S w

Φ
Φ

Φ
=                             (10) 

and the solution vector w of all the kernel learning 

methods, which marked by inner product sums of the 

image Φ (xi) of sample vectors in the eigenvector space, 

i.e: 

1

( ) ( )
N

i i

i

w x Xα α
=

= Φ = Φ∑               (11) 

 

where, 

1
( ) [ ( ),..., ( )]

N
X x xΦ = Φ Φ ，

1
[ ,..., ]T

N
α α α=  

 

From Eq. (11), it can see that: 
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Define Mj as a N×1 matrix and: 
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From Eq. (8) and (9), two equations can be derived 

(Scholkopf et al., 1997): 
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where, 

 

1
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c c
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c
= −                                        (16) 
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in the Eq. (16) and (17), M = (M1, M2, … ,Mc), Ki is 

a N × Ni(i = 1, 2, … , c) matrix with (Ki)p,q = k(XP, 

X
(ωi)

q), where p = 1, 2 ,…, N; q = 1, 2 , … , Ni, i.e., Ki is 

the type i kernel matrix, Ic, INi are c × c and Ni × Ni 

identity matrix respectively, where (i = 1, 2, … ,c) and 

Lc, LNi are c × c and Ni × Ni matrix consisted of 1 

respectively, where (i = 1, 2, … , c). 

From Eq. (14) and (15), it can be seen that Eq. (10) 

is equivalent to the equation: 

 

( )
T

T

T
J

H

α α
α

α α
=                             (18) 

 

Then, according to the same as Fisher linear 

discriminant function, the following equation can be 

obtained: 

 
1

H Tα λα−
=                (19) 
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After obtained the Eq. (19), eigenvector space can 
be calculated and the projections of the mapping data in 
it are the non-linear principal components. 

According to the above analysis, solving steps of 
FKPCA are as: 
 
Step1: Calculate the between-class scatter matrix and 

the within-class scatter matrix according to Eq. 
(8) and (9) 

Step2: Calculate eigenvalue and eigenvector according 
to Eq. (19) 

Step3: Sort all the eigenvalue by descending order and 
then sort the corresponding eigenvector 

Step4: Calculate the projection of mapping data in 
eigenvector space, then, the non-linear principal 
components with class information would be 
obtained 

Step5: Select the principal components according to 
accumulative contribution to reduce the 
dimension of raw data. The accumulative 
contribution can calculated by Eq. (20): 

 

1 1

AC
k N

i i

i i

λ λ
= =

=∑ ∑                                           (20) 

k is the number of the front eigenvalues under 
descending when AC>0.85. 
 

SIMULATION RESULTS AND DISCUSSION 
 

In this study, a simulation circuit of band-pass filter 

is chosen to verify the validity of proposed FKPCA 

method. The simulation experiment is carried out in 

Windows XP with MATALB2007a and the circuit 

simulation software Pspice9.2. Figure 1 shows circuit 

diagram of the band-pass filter. 

 

Diagnosis process: for the circuit, let the tolerances of 

resistances and capacitances are ±5% and ±10% 

respectively. Here, take R1=10kΩ with ±5% tolerance 

for example, which have three following cases: 
 

• When R1 ∈ [9.5k, 10.5k], it indicates that R1is in 
the normal condition , i.e., fault-free. 

• When R1 > 10.5k, it indicates that R1 overstep the 
normal upper limit, that is, soft fault happened; 
furthermore, limit case, R1 = ∞ is considered as 
stuck-open hard fault. 

 

 
 

Fig. 1: Band-pass filter 
 

Table 1: Setting of fault pattern 

Fault component 

Fault mode (out-of-tolerance) Fault class 

Normal 1 

R1  45% 2 

R1 -50% 3 

R2  50% 4 
R2 -40% 5 

R3  40% 6 

R3 -45% 7 
C1  50% 8 

C1 -50% 9 

C2  45% 10 
C2 -50% 11 

 

• When R1 < 9.5k, it indicates that R1 overstep the 

normal lower limit, that is, another soft fault 

happened; furthermore, limit case, R1 = 0 is 

considered as short circuit hard fault. 

 

After sensitivity analysis using the function in 

Pspice9.2, the components affected the output mostly 

would be chosen. The output voltages in seven 

frequency points (or more points) with obvious 

difference between the amplitude frequency respond are 

extracted as the original features of fault modes. 

Suppose single soft fault is happened each time, so, 

there are eleven fault modes (include normal condition) 

in all. Here, the out-of-tolerance range of each 

component is random. Table 1 shows all the fault 

modes. 

For each fault mode, taking 500 times Monte-

Carlo(M-C) analysis by Pspice, then, the original 

training sample set (20 samples per fault) and original 

test sample set (10 samples per fault) are obtained.  

Table 2: Results comparison of FKPCA and KPCA 

SNE 

FKPCA 
--------------------------------------------------------------------- 

KPCA 
----------------------------------------------------------------------------

λi P AC λi(10-5) P AC 

1 42.6557 0.7085 0.7085 0.9856 0.8886 0.8886 
2 15.7403 0.2614 0.9699 0.1178 0.1062 0.9948 
3 1.1536 0.0192 0.9891 0.0050 0.0045 0.9993 
4 0.2016 0.0033 0.9924 0.0004 0.00035 0.9996 
5 0.1548 0.0026 0.9950 0.0004 0.00035 1.0000 
6 0.0879 0.0015 0.9965 0.0000 0.0000 1.0000 
7 0.0703 0.0012 0.9977 0.0000 0.0000 1.0000 
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Fig. 2: The principal components projection of FKPCA   

 

 
 

Fig. 3: The principal components projection of KPCA 

 

When the aforementioned process is carried out, then, 

the fault features can be extracted by proposed KPCA 

 

Result analysis: in the study, Radial Basic Function 

(RBF) is used as the kernel function and the parameters 

of RBF are decided by extensive trials. Ultimately, 

σFKPCA = 2 and σKPCA = 0.25 are chosen for FKPCA and 

KPCA respectively. Table 2 shows the simulation 

results using proposed FKPCA and KPCA with these 

parameters. Because the numbers of eigenvalues are 

equal to the numbers of training samples (220-

dimension), for purposes of comparison , only the first 

seven eigenvalues are listed in Table 2, where SNE 

stands for sequence number of eigenvalues and AC 

stands for accumulative contribution,  P = λi /∑ ��
�
��� . 

It can see from Table 2, the accumulative 

contributions of the first two principle components of 

FKPCA and KPCA are all overtaken 95%(exceed 

85%), so, the first two eigenvectors are enough to 

construct the new feature subspace, which instead of 

the old seven ones. In this way, eigenvalue dimensions 

decrease to 2-dimension, Fig. 2 and 3 show the 

principle components projection obtained from FKPCA 

and KPCA respectively. 

From Fig. 2 and 3, due to introduction of the class 

information in FKPCA, the extracted principle 

components in the same classes are converged and that 

in the different classes are dispersed, which are helpful 

for exact classification by classifier, furthermore, 

helpful for diagnosing various faults. After obtaining 

the data from the above two methods, they are all sent 

to  BP  net  with variable rate learning method, RBF net  

Table 3: The results of faults diagnosis  

Diagnosis 
method 

FKPCA 

-------------------------------- 

KPCA 

--------------------------------

Recogni-
tion ratio  

Diagnosis 
time 

Recogni-
tion ratio 

Diagnosis 
time 

BP 100% 11.167s 89.90% 13.875s 

RBF 100% 0.109s 96.36% 0.641s 
PNN 100% 0.078s 95.45% 0.625s 

 
and PNN net respectively for training, the trained net 
can be used to diagnose the test data. Table 3 shows the 
results. 

The simulation results show when use the features 
extracted from the proposed FKPCA, all networks 
could diagnose faults perfectly, improve the fault 
recognizing rate and reduce training and recognizing 
time. So, through the experiments, it indicates that the 
proposed FKPCA method could compensate definitely 
for the deficiency of KPCA method without class 
information. 
 

CONCLUSION 
 

Aim to the problem of excluding class information 
in the process of KPCA, a improved KPCA method- 
FKPCA, is proposed. FKPCA constructs new 
eigenvector projection space by introducing Fisher 
linear discriminant function to make the extracted 
principle components include class information which 
is helpful for fault diagnosis. At last, the simulation 
experiment results indicate that the proposed method 
can make the classification of principle components 
more better and improve the performance of fault 
classifier. However, how to introduce the class 
information quantitatively is the next research work. 
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