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Abstract: Information on the friction torque time series of rolling bearings for space applications is mined to reveal 
its intrinsic operative mechanism of nonlinear dynamics. Based on the chaos theory and the simulation experiment 
of the changing vacuum, this study studies the changing characteristic of the friction torque with the decreasing 
vacuum in physical space, investigates variety and complexity forms of the strange attractor of the friction torque in 
phase space and estimates the maximum Lyapunov exponent and the correlation dimension. As a result, the intrinsic 
operative mechanism of nonlinear dynamics of the rolling bearing friction torque is characterized by a nonlinear and 
non-monotonic trend of the estimated correlation dimension with the increasing mean of the friction torque. 
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INTRODUCTION 

 
Spacecrafts move in earth orbit commonly under 

the vacuum condition at the 1×10
4
-1.33×10

7 
Pa air 

pressure for many scientific experiments. As a major 
performance indicator, the friction torque of rolling 
bearings is required strictly to ensure the good 
performances of spacecrafts (Xia and Li, 2011). 
Therefore, it has been given the attention continuously 
along with many new findings. 

For example, Wikstrom and Hoglund et al. (1996a, 
b) investigated the starting and steady-state friction 
torque of grease-lubricated rolling bearings at low 
temperatures; Xia and Wang (2009) studied the grey 
relation of the nonlinear characteristic with the dynamic 
uncertainty of the rolling bearing friction torque; and 
Cousseau et al. (2010) presented an experimental 
measuring procedure for the friction torque in rolling 
bearings and quantified the power loss and the heat 
evacuation for each lubricant tested via continuously 
monitoring the friction torque and operating 
temperatures. But, the existing findings do not involve 
the characteristics of the rolling bearing friction torque 
with changing vacuum. 

For rolling bearings for space applications, it is 
possible that different vacuum environments lead to 
different states of the values of the friction torque (Xia 
and Wang, 2011; Xia, 2012), in which a wealth of 
information should be implied and it must be extracted 
for safe reliable operation of spacecrafts. For this reason, 
based on the chaotic theory and the simulation 

experiment of the change vacuum, information mining 
for the friction torque time series of rolling bearings for 
space applications is made to reveal its intrinsic 
operative mechanism of nonlinear dynamics. 
 

EXPERIMENT OF ROLLING BEARING 
FRICTION TORQUE 

 
Vacuum is a gas condition, under which in the 

given space, the pressure is lower than 101325Pa, viz., 

one standard atmospheric pressure and it is defined as: 

 

Vacuum = atmospheric pressure − absolute pressure  (1) 

 

Over the Earth, the higher the altitude is, the thinner 

the air is and the higher the vacuum is. 

The simulation experiment is produced and the 

indirect measuring method is used. The testing system 

consists of a direct current stabilized source, a vacuum 

tester and a reaction flywheel control box, etc. The 

rolling bearing is installed in a vacuum housing on the 

vacuum tester for mimicking a space environment. The 

friction torque is expressed as the electric current X, in 

mA. The vacuum is expressed as the vacuum factor v 

which is a dimensionless variable and takes values in the 

range from 0 to 1. The higher the vacuum is, the smaller 

the vacuum factor is; otherwise, the larger the vacuum 

factor is. The experimental condition is listed in Table 1. 

The friction torque of six rolling bearings, numbered as 

1, 2, 3, 4, 5     and    6,   respectively, is measured in the  
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Table 1: Experimental condition 

Parameter Parameter value 

Vacuum factor, v 0-1 

Temperature, T/°C 20-25 
Relative humidity, R/% 55 

Sequence number of rolling 

bearing 

1-6 

Rotational speed (six rolling 

bearings), w/(r/min) 

5140-5037(No.1), 4635-

4610(No.2), 4735-4710(No.3),  

4761-4720(No.4), 4804-
4736(No.5), 4661-4619(No.6) 

Sample interval, ∆t/h 24 

 

 
 
Fig. 1: Time series of friction torque of rolling bearing 1 

 

 
 
Fig. 2: Time series of friction torque of rolling bearing 2 

 
 

 

Fig. 3: Time series of friction torque of rolling bearing 3 

 
 
Fig. 4: Time series of friction torque of rolling bearing 4 

 

 
 

Fig. 5: Time series of friction torque of rolling bearing 5 

 

 

 

Fig. 6: Time series of friction torque of rolling bearing 6 

 

experimental investigation and the time series of the test 

data are shown in Fig. 1 to 6.  

In the experimental investigation the vacuum factor 

v is changed linearly from 0 to 1 one period every about 

30 days in order to simulate the changing vacuum. This 

results in the regularly linear increase of the time series 

of the rolling bearing friction torque. Based on the chaos 

theory, this study aims at discovering the intrinsic 

operative mechanism of nonlinear dynamics of the 

friction torque of the rolling bearing that runs in 

changing vacuum. 
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INFORMATION MINING FOR EVOLUTION OF 

ROLLING BEARING FRICTION TORQUE 

 

Time series: Assume the time series of the friction 

torque of rolling bearings for space applications in Fig. 1 

to 6 can be expressed as: 

 

X = (x(1)), x(2), …, x(j), … , (J)                (2) 

 

where,  

X  = The time series of the friction torque of 

rolling bearings for space applications  

j  =   The sequence number  

x(j)  =   The jth datum in  

X and J  =   The number of the data in X 

 

Mean: Via the statistical theory, the mean of the rolling 

bearing friction torque is defined as: 

 

∑
=

=
J

j

jx
J

X

1

0 )(
1                              (3) 

 

where, X0 = The mean of X. 

The mean can be employed to make information 

mining for the measure of the rolling bearing friction 

torque in physical space. 

 

Phase trajectory: According to the phase space 

reconstruction theory, a phase trajectory can be 

obtained as: 

 

));)1((),...,)1((),...,(),(()( τττ −+−++= mtxktxtxtxtX

mkMt ,...,2,1;,...,2,1   ==                         (4) 

with: 

 

M = J – (m -1) τ                                       (5) 

 

where, t stands for the the phase trajectory, x (t+ (m-1)τ) 

for the delay value, m for the embedding dimension 

which is obtained by the false nearest neighbor method 

(Sofiane et al., 2006), τ for the delay time which is 

obtained by the mutual information method (Gao et al., 

2008) and M for the number of the phase trajectories. 

Equation (4) is the m-dimension state space, viz., 

the phase space reconstituted by the measured value x (t) 

and the delay value x (t+ (m–1)τ).  

The phase space reconstruction can lay the 

foundation for information mining for chaotic 

characteristics of the rolling bearing friction torque in 

phase space. 

 

Maximum lyapunov exponent: The first chaotic 

characteristic of the rolling bearing friction torque as a 

time series is the maximum Lyapunov exponent. 

As for a chaotic system, its sensitive dependence on 

the initial conditions is that two phase trajectories that 

have nearly identical initial states will separate from 

each other at an exponentially increasing rate. Lyapunov 

exponents are the quantitative measure for 

distinguishing the chaotic characteristics of the time 

series. In the practical time series, λ1, the maximum 

Lyapunov exponent, is generally estimated to 

distinguish the characteristics of the time series. If λ1>0, 

the time series is the chaotic time series. In this study, 

the Wolf method (Wolf et al., 1985) based on the 

evolvement method of the phase trajectories is 

employed to calculate the maximum Lyapunov 

exponent λ1 and the average period P is obtained by 

means of the fast Fourier transform algorithm (Lv et al., 

2002; Xia, 2012). 

In general, the longest prediction time, namely, the 
predictable time, is defined as Tm=1/λ1, at which the 
state errors of the time series are increasing twice and it 
can also be regarded as one of the reliability indexes of a 
short-term prediction.  
 
Strange attractor: The second chaotic characteristic of 
the rolling bearing friction torque as a time series is the 
strange attractor. 

The strange attractor is a form of the phase 
trajectory, from which the evolution of the dynamic 
characteristic of the rolling bearing friction torque can 
be diagramed in phase space. In this study, the form is 
defined as a curve with the abscissa x (t) and the 
ordinate x (t+ (m-1)τ) x(t). 
 
Correlation dimension: The third chaotic characteristic 
of the rolling bearing friction torque as a time series is 
the correlation dimension. 

The correlation dimension in the chaos theory is 
used to study the nonlinear characteristics of the rolling 
bearing friction torque. 

Let t = i and l, respectively, in Eq. (2), then the 
distance between two trajectories X (i) and X (l) is 
obtained as: 

 

∑
=

−+−−+=
m

k

klxkixlir

1

2
)))1(())1(((),( ττ               (6) 

 
Given m and τ, the correlation dimension of the 

strange attractor can be expressed as: 
 

r

mrC
mrD

r ln

),(ln
lim),(

0
2

→
=                      (7) 

 
where C(r, m) is the probability of r(i, l)<r, i.e., the 
accumulating distance distribution function and is given 
by: 
 

∑∑
= +=

−
−

=
N

i

N

il

lirr
NN

mrC
1 1

)),((
)1(

2
),( θ                 (8) 

 

where, θ(·) = The Heaviside function and is given by: 
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Table 2: Mean of rolling bearing friction torque in physical space 

Item 

Sequence number of rolling bearing 

---------------------------------------------------------------------------------------------------------------------------------- 

1 2 3 4 5 6 

Mean of rolling bearing friction 

torque, Xm/mA 

0.3865 0.3760 0.3960 0.3452 0.3502 0.3651 

 
Table 3: Parameter of phase trajectory of rolling bearing friction torque in phase space 

Item 

Sequence number of rolling bearing 

---------------------------------------------------------------------------------------------------------------------------------- 

1 2 3 4 5 6 

Average period, P 32 32 32 30 30 30 

Delay time, τ 5 6 6 2 3 2 

Embedding dimension, m 7 6 7 5 11 4 

Maximum Lyapunov exponent, λ1 0.1668 0.0638 0.1024 0.1362 0.0914 0.1221 

Predictable time, Tm/(24h) 5.995 15.674 9.766 7.342 10.941 8.190 

 

Table 4: Parameter of chaotic evolution of rolling bearing friction torque in phase space 

Item 

Sequence number of rolling bearing 

------------------------------------------------------------------------------------------------------------------------------- 

1 2 3 4 5 6 

Saturated embedding dimension, 

m0 

12 14 16 16 16 14 

Estimated correlation dimension, 

D2 

3.3371 3.3384 3.3434 2.8650 3.9207 3.5503 

 





<

≥
=−

),(;0

),(;1
)),((

lirr

lirr
lirrθ                        (9) 

 

In practical calculation, the limit r→0 cannot be 

satisfied, then a graph about lnr-lnC (r, m) is plotted 

commonly in order to obtain an estimated value D2 of 

the correlation dimension D2 (r, m). When m≥m0 where 

m0 is called the saturated embedding dimension, the 

curves in this graph are approaching parallel each other 

and denser distributing. At this time, the slope of the 

curve in its linear range corresponding to m = m0 is just 

the estimated correlation dimension D2. The value of D2 

no longer changes with the increase of m.   

 

RESULTS AND ANALYSIS 

 

For the time series of the rolling bearing friction 

torque studied in the experiment, the results in physical 

space and in phase space are presented in Table 2 and 3, 

respectively. Given the delay time τ and the embedding 

dimension m in accordance with Table 3, the diagramed 

results of the phase trajectories of the six rolling bearing 

friction torques are shown in Fig. 7 to 12. 

It can be seen from Table 3 that the maximum 

Lyapunov exponent λ1 is greater than zero, the time 

series of the rolling bearing friction torque studied in the 

experiment can therefore be considered as the chaotic 

time series, i.e., the rolling bearing friction torque is 

characterized by nonlinear dynamics. In addition, the 

predictable time Tm takes values in range from 5.995 to 

15.674 days, revealing that the friction torque can be 

predicted when the rolling bearing runs in changing 

vacuum. 

 

 

Fig. 7: Strange attractor of friction torque of rolling bearing 1 

 

 

 

Fig. 8: Strange attractor of friction torque of rolling bearing 2 

 

 

 

Fig. 9: Strange attractor of friction torque of rolling bearing 3 
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Fig. 10: Strange attractor of friction torque of rolling bearing 

4 
 

 

 
Fig. 11: Strange attractor of friction torque of rolling bearing 

5 
 

 

Fig. 12: Strange attractor of friction torque of rolling bearing 

6 

 

 
 
Fig. 13: Graph of lnr-lnC (r, m) of friction torque of rolling 

bearing 1 
 

It is very easy to see from Fig. 7 to 12 that different 

rolling bearings display different strange attractors.  

 
 
Fig. 14: Graph of lnr-lnC (r, m) of friction torque of rolling 

bearing 2 

 

 
 

Fig. 15: Graph of lnr-lnC (r, m) of friction torque of rolling 

bearing 3 

 

 

 
Fig. 16: Graph of lnr-lnC(r, m) of friction torque of rolling 

bearing 4 

 

This indicates that the rolling bearing friction torques 

show a variety and complexity in phase space although 

they have same rules, viz., the regularly linear increase 

in physical space, as shown in Fig. 1 to 6. This variety 

and complexity, in fact, is one of the chaotic behaviors. 

In order to uncover the nature of the variety and 

complexity, the estimated correlation dimension D2 of 

the rolling bearing friction torque are discussed below. 
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Fig. 17: Graph of lnr-lnC(r, m) of friction torque of rolling 

bearing 5 

 

 
 

Fig. 18: Graph of lnr-lnC(r, m) of friction torque of rolling 

bearing 6 

 

 
 
Fig. 19: Relation of estimated correlation dimension with 

mean of rolling bearing friction torque 

 

In calculating the correlation dimension the delay τ 

is given in the light of Table 3. The lnr-lnC (r, m) graph 

about the time series in Fig. 1 to 6 is shown in Fig. 13 to 

18. The saturated embedding dimension m0 and the 

estimated correlation dimension D2 are listed in Table 4. 

From Table 2 and 4, the relation of the estimated 

correlation dimension D2 in phase space with the mean 

X0 in physical space is obtained, as shown in Fig. 19. 

Clearly, the estimated correlation dimension D2 presents 

a nonlinear and non-monotonic trend with the increasing 

mean X0. As a result, the mapping from physical space 

to phase space is nonlinear and non-monotonic. This is 

the intrinsic operative mechanism of nonlinear dynamics 

of the friction torque of the rolling bearing that runs in 

changing vacuum. 

 

CONCLUSION 
 

In physical space, the rolling bearing friction 
torque increases with the decreasing vacuum, but, in 
phase space, different rolling bearings display different 
strange attractors and show variety and complexity 
forms with the decreasing vacuum. 

The friction torque is of the chaotic time series 
because its maximum Lyapunov exponent is greater 
than zero and it can therefore be predicted when the 
rolling bearing runs in changing vacuum. 

The intrinsic operative mechanism of nonlinear 
dynamics of the friction torque of the rolling bearing is 
characterized by a nonlinear and non-monotonic trend 
of the estimated correlation dimension with the 
increasing mean of the friction torque,. 
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