
Research Journal of Applied Sciences, Engineering and Technology 5(22): 5194-5200, 2013

DOI:10.19026/rjaset.5.4264

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: July 27, 2012 Accepted: September 12, 2012 Published: May 25, 2013

Corresponding Author: Desheng Li, School of Science, Anhui Science and Technology University, Fengyang 233100, China
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

5194

Research Article
Accelerating 3D Visualization in Reservoir Modeling System with

Programmable Hardware

1
Lin Liu,

2
Yumei Ning and

3
Desheng Li

1
Software Institute East China Institute of Technology, Nan Chang 330013, China

2
School of Computer Science and Technology, Xidian University, Xi’an 710071, Shanxi, China

3
School of Science, Anhui Science and Technology University, Fengyang 233100, China

Abstract: This study presents a new method on 3D visualization in reservoir modeling system by using the
computation power of modern programmable Graphics hardware (GPU). The proposed scheme is devised to achieve
parallel processing of massive reservoir logging data. By taking advantage of the GPU's parallel processing
capability, moreover, the performance of our scheme is discussed in comparison with that of the implementation
entirely running on CPU. Experimental results clearly show that the proposed parallel processing can remarkably
accelerate the data clustering task. Especially, although data-transferring from GPU to CPU is generally costly,
acceleration by GPU is significant to save the total execution time of data-clustering and also significantly alleviates
the computing load on CPU.

Keywords: Graphics Processing Unit (GPU), massive data, reservoir modeling, 3D visualization

INTRODUCTION

In the past years, there exist many applications of

the 3D scientific visualization and acceleration in
numerous areas, such as the online game, the 3D scene
wander, the flight simulation, virtual operation and so
forth. In particular, 3D visualization of complex
reservoir modeling is proved to be a highly competitive
and important task. In the reservoir modeling, the
location and the shape of moving objects should be
drawn in real time. The refresh of the frames should not
be noticed by users when the viewpoint changed
(Haldorsen and Damsleth, 1990; Omre, 1991; Manocha,
2005). Moreover, the scene also should be redrawn to
adjust with the action of people. Especially, there are
enormous of data should be processed to construct the
complex reservoir modeling.

Unfortunately, most of the modeling software can
only sustain limited logging data (Dubrule, 1993;
Yorozu et al., 1987). The transformation of the model
would be too slow to display. At the meantime, the
information could lose if we reduce the logging data
increasing with the size and dimension of data sets. For
the purpose of accelerating the speed for massive data
processing, many approaches for parallel data clustering
have been proposed (Kruger and Westermann, 2003; Li
et al., 2003).

This study presents an effective implementation
scheme of 3D scientific visualization of the reservoir
modeling system, in which each PC is equipped with a
commodity programmable Graphics Processing Unit

(GPU). The proposed scheme is designed to achieve
paralleling processing commoditization of modern
GPUs, leading to a relatively low price per unit and
rapid development of next generation processors.

Graphics Processing Unit and CUDA: GPU’s
amazing evolution on both computational capability
and functionality extends application of GPU to the
field of non-graphics computation, which is so-called
General Purpose computation on GPUs (GPGPU)
(Moreland and Angel, 2003; Trendall and Steward,
2000). Design and development of GPGPU are
becoming significant because of the following reasons:

• Cost-performance: Using only commodity

hardware is important to achieve high computing

performance at a low cost and GPUs have become

commonplace even in low-end PCs. Due to the

hardware architecture designed for exploiting

parallelism of graphics, even today’s low-end GPU

exhibits high-performance for data-parallel

computing. In addition, GPU has much higher

sequential memory access performance than CPU,

because one of GPU’s key tasks is filling regions

of memory with contiguous texture data

(Agarwal et al., 2003). That is, GPU’s dedicated

memory can provide data to GPU’s processing

units at the high memory bandwidth.

• Evolution speed: GPU’s performance such as the
number of floating-point operations per second has

Res. J. Appl. Sci. Eng. Technol., 5(22): 5194-5200, 2013

5195

Fig. 1: The CUDA program model

been growing at a rapid pace (Owens et al., 2007).

Due to their highly parallel architecture, the

programmable pixel pipeline of modern GPUs is

capable of a theoretical peak performance that is an

order of magnitude higher than CPU. An NVIDIA

7900 GTX 512 has FLOPS rating of around 200

Giga FLOPS compared to a high-end PC, which is

capable of around 10 Giga FLOPS. Furthermore,

GPU performance has been increasing by a factor

of 2 to 2.5 per year, which is faster than the

increase in CPU performance as predicted by

Moore’s law. The high performance-to-cost ratio,

rapid increase in performance and widespread

availability of GPUs, which can deliver several

times the performance of a single CPU, have

propelled them to the forefront of high

performance computing. The utility of GPUs has

expanded beyond traditional graphics rendering.

nVIDIA’s CUDA programming guide (Moreland

and Angel, 2003) estimates CUDA hardware to be

approximately 1000% faster than a Core2Duo.

However Sunlight LB’s CUDA kernel achieved speed-

ups of 149% running on Gee Force 8800GTS and 119%

on Gee Force 8800GT in relation to Intel’s Core2Duo.

Hence, the port seems not to be programmed well

enough to exhaust CUDA hardware’s power. This is

caused by non-optimized memory access patterns of

Sunlight LB’s core simulation functions from CUDA’s

point of view (Ji and Wu, 2006). To achieve high

performance on CUDA, it is very important for the

GPU software to access data as big sequential blocks in

GPU’s D-RAM memory (Owens et al., 2007).

Traditional CPU software is not that dependent on

block data access patterns, as the various caches of a

modern CPU absorb this matter in a transparent way. If

the desired algorithm is not adaptable to block access,

the software must embed cache-like routines inside the

GPU code for block wise loading and unloading of

input and output data between GPU’s DRAM memory

and share memory located on the GPU itself. Then the

algorithm can access randomly to data inside the shared

memory space without major performance penalty. The

CUDA program model is shown as Fig. 1.

THE METHODS OF GEOLOGY STATISTICS

Among the present spatial data interpolation

methods, the Kriging method is an optimal interpolation

method, with an unbiased interpolated value and

minimal estimation variance. Most of the 3D

Visualization is using the Methods as spatial data

interpolation method (Castrignan and Butta Fuoco,

2004). By using the method of Kriging interpolation in

Limited area, continuous reservoir data body can be

obtained. Several forms of the Kriging interpolation

method exist, such as the simple Kriging method, the

ordinary Kriging method, the co-Kriging method, the

stratified Kriging method and the nonlinear Kriging

method. However, each form has particular

characteristics and it is suitable for a specific task. In

this study, an ordinary Kriging interpolating approach

was used to construct the data body. Supposed that there

are k kinds of rock faces (s1, s2, ..., sk) in the modeling

area, we can define variable:

=
0

1
)(uI

k

k

suZ

suZ

∉

∈

)(

)(
 (1)

The probability of being the k faces for any

modeling point is: P(Ik) = 1|Z(uα) = sα. ∀α. α could be

the area which concludes the points, the probability

Res. J. Appl. Sci. Eng. Technol., 5(22): 5194-5200, 2013

5196

Fig. 2: The common technological process of the 3D
visualization model

could be calculated by the formula below, by which the

λα is the weight coefficient, it could be confirmed:

1

(1| (,)

() [1 ()])

k

n

k k

P I z u s

E I E I

α α

α
α

α

λ
=

= = ∀

= + −∑
 (2)

Before the geology model can be drawn on the

computer, it should go through a series of coordinate

transformation. The common technological process is

shown in Fig. 2.

Firstly, the mathematical description of the model

can be preprocessed after reading it, set appropriate

parameters such as length, width, etc. Then viewpoint

to observe interested landscape is set. The description

of how to observe the 3D model should be present after

the construction. According to a series of coordinate

transformation, the observation of 3D model can be

observed in an appropriate position which is adapted to

the viewpoint. In the observation process of 3D model,

the observation way is up to the type of the projection

transformation, different projection transformation get

different 3D scene. The scene of transformation model

is cut or zoom in the viewpoint transform which

decides the whole3D model of the image on the screen.

3D visual modeling of Reservoir can be divided into

three layers on macroscopic: the data interface layer,

business logic disposal layer and human-computer

interaction layer (Fig. 3).

The format of the data set (such as file, database)

can be translated in the interface layer, then it would be

loaded in the business logic disposal layer for

processing to establish reservoir data model. Finally,

the model results can be shown in human-computer

interaction layer. Among them, the business logic

disposal layer and divided into three main steps to

complete: the tectonic modeling, sedimentary faces

modeling and property modeling (usually in a phased

conditions).

Element copy kernel function design: The kernel

function operation principle is that the CUDA program,

which is designed to be a kernel, could be executed by

sending to a grid. A number of blocks are contained in a

grid and several threads could be executed by every

block. The element copy kernel function declared

below:

-global-void kernel (float* d-1, float* d-

2,float* d-3，float* d-4,float* d-5)

The function which is defined by global would be a

kernel function and it would be invoked in the host

computer. This part could be transformed from CPU to

GPU for parallel processing. The logging parameters

would be transformed to the GPU by kernel function.

The kernel function could be invoked like this:

Dim3 grid (5, 5);

Dim3 thread (BLOCKDIM X, BLOCKDIM Y);

Kernel <<< grid, block >>> (d 1, d 2, d 3, d 4, d 5);

The grid.x*grid.y is the amount which would be

sent, thread.x* thread.y is the amount of threads in

every block.

Fig. 3: The common technological process of the geology model

Res. J. Appl. Sci. Eng. Technol., 5(22): 5194-5200, 2013

5197

THE CODE DESIGN OF HOST IN 3D

VISUALIZATION

The processing results of logging data are not
unique. It is not very complex to compare the results and
discover the suited results, but the amount of the data
involved in the modeling is enormous and a wide range
of data could be processed. It would be unrealistic and
low efficiency relying on the CPU only. Therefore, the
logging data are considered to be arranged as matrix.
The data should be mapped in the textures of GPU and
the parallel and floating-point calculation could be
processed. In our modeling, the data type is single
floating-point and the amount of the wells is 968 and the
logging data would be kept in two matrixes. The logging
data is included in the matrix 1 and the 3D modeling
dataset is included in the matrix 2.

The progress of data generating in the CPU could
be simple:

float* a = (float*) malloc (size of (float)*W*H)

The realistic general purpose of GPU needs to show
the data by graphics and the mapping methods from
matrix to texture should be limited by special grammar
and format. Hence, the transformation of the data from
CPU (HOST) to GPU (DEVICE) and the malloc of
memory would have special format:

CUDA SAFE CALL (cuda Malloc (void**) & d 1,
sizeof (float)*W*H))

CUDA SAFE CALL (cuda Memcpy (d 1, a, sizeof
(float)*W*Hcuda Memcpy Host to Device))

EXPERIMENTAL RESULTS

The software and hardware environment is shown

in Table 1. Briefly, the GPU is NVIDIA Gee Force
8400M GS and the CPU is Intel Core2Duo 1.5 GHz,
which run in different equipments owning same price.
While the 3D visualization displays in the VS2005. The
X-coordinate of reservoir modeling area is from 410km
to 470km, the Y-coordinate is from 450km to 520km.

In addition, for the purpose of comparing the speed
of CPU and GPU, we have designed a method for speed
testing. Due to the GPU data processing ability is far
higher than the CPU and the display work can be
accomplished soon after the compute, we should assign
calculation amount to the GPU as mush as possible, the
CPU only need to translate the data to the GPU. The
GPU would send the data to CPU after the parallel
computing is finished and calculation results is
accomplished. So we just need to record the speed of
CPU modeling test.

The 3D modeling results consist of the running time
under CPU/GPU and the corresponding speed-up is
recorded in Table 2. To explain it more intuitively, Fig.
4 draws the curves illustrating the comparison of
running time between the CPU and GPU. The costing
time in the CPU is from 44.786 to 72.556 ms, while the

Table 1: Experimental environment and results

Item System environment

GUP NVIDIA GeForce 8400 GS
CPU Intel Core2 duo 1.5 GHz
RAM 2.0 GB
OS Microsoft windows XP pro SP2
IDE Microsoft visual studio 2005 visual ++
SDK NVIDIA CUDA toolkit 2.0beta

NVIDIA CUDA SDK 2.0beta
NVIDIA CUDA driver 2.0beta

Table: 2 Comparison of 3D modeling runtime in CPU and GPU

No. CPU (ms) GPU (ms) Speed-up

1 56.245 20.542 2.738
2 67.458 29.575 2.280
3 44.786 26.455 1.692
4 60.395 35.343 1.708
5 72.556 32.546 2.229
6 70.370 33.483 2.230
7 65.735 29.476 1.951
8 58.368 38.571 2.230
9 58.465 34.280 1.513
10 57.350 31.439 1.824

Fig. 4: Comparison of 3D modeling runtime in CPU and GPU

costing time in the CPU is from 20.542 to 38.57ms,

respetively. From these data, the acceleration using our

approach is obvious and significant.

Furthermore, the 3D modeling of restraint area, that

with boundary and 1st section are shown in Fig. 5a to c

respectively. The results show that the general purpose

is suited for the processing of mass data. The logging

data has a huge amount in our model and most of them

are floating point data, where the display speed would

be slow if only relying on CPU. We presented the

methods of parallel processing by GPU with the same

price to share the calculated amount and then the speed

is accelerated. Hence, the general purpose of GPU could

be an important and meaningful research.

CONCLUSION AND RECOMMENDATIONS

In this study, the GPU implementation of 3D

Visualization in Reservoir Modeling System is

discussed compared with the CPU implementation to

clarify the performance gain of GPU co-processing.

The results have shown that the approach is

efficient and the computing load of CPU is also

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10
Run time

T
h
e
 t

im
e
 r

u
n

n
in

g
 o

n
 c

o
m

p
u

te
r/

m
s

The time running on GPU/ms

The time running on CPU/ms

Res. J. Appl. Sci. Eng. Technol., 5(22): 5194-5200, 2013

5198

(a) The 3D modeling of restraint area

(b) The 3D modeling of restraint area with boundary

Res. J. Appl. Sci. Eng. Technol., 5(22): 5194-5200, 2013

5199

(c) The 3D modeling of restraint area with 1st section

Fig. 5: Screenshots of 3D modeling of restraint area

alleviated. Using modern graphics processing units for

no-graphics high performance computing is motivated

by their enhanced programmability, attractive

cost/performance ratio and incredible growth in speed.

Although the pipeline of a modern Graphics Processing

Unit (GPU) permits high throughput and more

concurrency, they bring more complexities in analyzing

the performance of GPU-based applications.

In this study, we did not compare the performances

of CPU which has more than double cores. Instead, we

only restricted our comparison to dual-core. The use of

a specific application programming interface might

prove the calculation time through the use of a multi-

core CPU rather than a dual-core CPU (Spoerk et al.,

2007). The multi-threading implementation with

effective load balancing between CPU and GPU will be

investigated in our future work.

ACKNOWLEDGMENT

This study was supported by the support of Natural

Science Fund from Jiangxi Province (No.

20114BAB211026), the Schoolmaster Fund in East

China Institute of Technology (No. DHXK0934), the

Talent Introduction Special Fund of Anhui Science and

Technology University (No. ZRC2011304) and Science

and Technology Plan Project of Chuzhou City (No.

201236).

REFERENCES

Agarwal, P., S. Krishnan and N. Mustafa, 2003.

Streaming geometric optimization using graphics

hardware. Proceeding of 11th European

Symposium on Algorithms, pp: 544-555.

Castrignan, A. and G. Butta Fuoco, 2004. Geostatistical

stochastic simulation of soil water content in a

forested area of south Italy. Biosyst. Eng., 87(2):

257-266.

Dubrule, O., 1993. Introducing more geology in

stochastic reservoir modeling. Quant. Geo. G., 5:

351-369.

Haldorsen, H. and E. Damsleth, 1990. Stochastic

modeling. J. Petrol. Technol., 42(4): 404-412.

Ji, J. and E. Wu, 2006. View-dependent re_nement of

multiresolution meshes using programmable

graphics hardware. Visual Comput., 22: 424-433.

Kruger, J. and R. Westermann, 2003. Linear algebra

operators for gpu implementation of numerical

algorithms. ACM Trans. Graph., 22: 908-916.

Res. J. Appl. Sci. Eng. Technol., 5(22): 5194-5200, 2013

5200

Li, W., X. Wei and A. Kaufman, 2003. Implementing
lattice boltzmann computation on graphics
hardware. Vis. Comput., 19(7-8): 444-456.

Manocha, D., 2005. General-purpose computations
using graphics processors. Computer, 38(8): 85-88.

Moreland, K. and E. Angel, 2003. The FFT on a GPU.
Proceedings of the SIGGRAPH/ Eurographics
Workshop on Graphics Hardware. San Diego, pp:
112-119.

Omre, H., 1991. Stochastic models for reservoir
characterization. In: Kleppe, J. and S.M.
Skjaeveland (Eds.), Recent Advances in Improved
Oil Re-covery Methods for North Sea Sandstone
Reservoirs. Norwegian Petroleum Directorate,
Stavanger, Norway.

Owens, J.D., D. Luebke, N. Govindaraju, M. Harris, J.
Kruger, A.E. Lefohn and T.J. Purcell, 2007. A
survey of general-purpose computation on graphics
hardware. Comput. Graph. Forum, 26(1): 80-113.

Spoerk, J., H. Bergmann, F. Wanschitz, S. Dong and
W. Birkfellner, 2007. Fast DRR splat rendering
using common consumer graphics hardware. Med.
Phys., 34: 4302-4308.

Trendall, C. and A.J. Steward, 2000. General
calculations using graphics hardware, with
applications to interactive caustics. Proceedings of
Eurogaphics Workshop on Rendering. Springer,
pp: 287-298.

Yorozu, Y., M. Hirano, K. Oka and Y. Tagawa, 1987.
Electron spectroscopy studies on magneto-optical
media and plastic substrate interface. IEEE T. J.
Magn. Japan, 2: 740-741.

