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Abstract: An ensemble consists of a set of independently trained classifiers whose predictions are combined when 
classifying novel instances. Previous research has shown that an ensemble as a whole is often more accurate than 
any of the single classifiers in the ensemble. Boosting-BAN classifier is considered stronger than Boosting-Multi 
TAN on noise-free data. However, there are strong empirical indications that Boosting-MultiTAN is much more 
robust than Boosting-BAN in noisy settings. For this reason, in this study we built an ensemble using a voting 
methodology of Boosting-BAN and Boosting-MultiTAN ensembles with 10 sub-classifiers in each one. We 
performed a comparison with Boosting-BAN and Boosting-MultiTAN ensembles with 25 sub-classifiers on 
standard benchmark datasets and the proposed technique was the most accurate. 
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INTRODUCTION 

 
The goal of ensemble learning methods is to 

construct a collection (an ensemble) of individual 
classifiers that are diverse and yet accurate. If this can 
be achieved, then highly accurate classification 
decisions can be obtained by voting the decisions of the 
individual classifiers in the ensemble. Many authors, 
just like Breiman (1996), Kohavi and Kunz (1997) and 
Bauer and Kohavi (1999), have demonstrated 
significant performance improvements through 
ensemble methods.   

An accessible and informal reasoning, from 
statistical, computational and representational 
viewpoints, of why ensembles can improve results is 
provided by Dietterich (2001). The key for success of 
ensembles is whether the classifiers in a system are 
diverse enough from each other, or in other words, that 
the individual classifiers have a minimum of failures in 
common. If one classifier makes a mistake then the 
others should not be likely to make the same mistake.  

Boosting, the machine-learning method that is the 
subject of this study, is based on the observation that 
finding many rough rules of thumb can be a lot easier 
than finding a single, highly accurate prediction rule. 
To apply the boosting approach, we start with a method 
or algorithm for finding the rough rules of thumb. The 
boosting algorithm calls this "weak" or "base" learning 
algorithm repeatedly, each time feeding it a different 
subset of the training examples (or, to be more precise, 
a different distribution or weighting over the training 
examples). Each time it is called, the base learning 

algorithm generates a new weak prediction rule and 
after many rounds, the boosting algorithm must 
combine these weak rules into a single prediction rule 
that, hopefully, will be much more accurate than any 
one of the weak rules. 

The first provably effective boosting algorithms 
were presented by Freund and Schapire (1995). 
Boosting works by repeatedly running a given weak 
learning algorithm on various distributions over the 
training data and then combining the classifiers 
produced by the weak learner into a single composite 
classifier. The first provably effective boosting 
algorithms were presented by Schapire (1990). More 
recently, we described and analyzed AdaBoost and we 
argued that this new boosting algorithm has certain 
properties which make it more practical and easier to 
implement than its predecessors. 

TAN and BAN are augmented Bayesian network 
classifiers provided by Friedman et al. (1999) and 
Cheng and Greiner (1999). They treat the classification 
node as the first node in the ordering. The order of other 
nodes is arbitrary; they simply use the order they appear 
in the dataset. Therefore, they only need to use the 
CLB1 algorithm, which has the time complexity of O 
(N2) on the mutual information test (N is the number of 
attributes in the dataset) and linear on the number of 
cases. The efficiency is achieved by directly extending 
the Chow-Liu tree construction algorithm to a three-
phase BN learning algorithm (Cheng et al., 1997): 
drafting, which is essentially the Chow-Liu algorithm, 
thickening, which adds edges to the draft and thinning, 
which verifies the necessity of each edge. 
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Boosting-BAN classifier is considered stronger 
than Boosting-MultiTAN classifier on noise-free data; 
however, Boosting-MultiTAN is much more robust 
than Boosting-BAN in noisy settings (Xiaowei and 
Hongbo, 2011). For this reason, in this study, we built 
an ensemble combing Boosting-BAN and Boosting-
MultiTAN version of the same learning algorithm using 
the sum voting methodology. We performed a 
comparison with Boosting-BAN and Boosting-
MultiTAN ensembles on standard benchmark datasets 
and the proposed technique had the best accuracy in 
most cases.  
 

ENSEMBLES OF CLASSIFIERS 

 

Boosting-BAN algorithm: Boosting-BAN works by 
fitting a base learner to the training data using a vector 
or matrix of weights. These are then updated by 
increasing the relative weight assigned to examples that 
are misclassified at the current round. This forces the 
learner to focus on the examples that it finds harder to 
classify. After T iterations the output hypotheses are 
combined using a series of probabilistic estimates based 
on their training accuracy. 

The Boosting-BAN algorithm may be 
characterized by the way in which the hypothesis 
weights wi are selected and by the example weight 
update step. 
 

Boosting-BAN (Dataset, T): Input: sequence of N 
example Dataset = {(x1, y1),…, (xN, yN)} with labels 
yi∈Y = {1,…,k}, integer T specifying number of 
iterations.  

Initialize ��
(�)

 = 1/N for all i, TrainData-1 = Dataset 
 Do for t = 1, 2,…, T: 
 
• Use TrainData-t and threshold ε  call BAN, 

providing it with the distribution. 
• Get back a hypothesis BAN

 (t)
: X�Y. 

• Calculate the error of BAN
 (t): e (t)

 =∑
N

i=1��
(�)I (yi≠

BAN
 (t)

 (xi)). 
• If e (t)

 ≥0.5, then set T=t-1 and abort loop. 
• Set µ (t)

=e
(t)

/(1-e
(t)). 

 
• Updating distribution w

(t+1)
i=w

(t)
i ( µ (t))s

, where 

s=1-I(yi≠BAN
(t)(xi)). 

• Normalize w
 (t+1)

i, to sum to 1. 
  

Output the final hypothesis:   
 

H(x)=argmaxy∈Y(∑
T

t=1(log(1/µ
(t)))I(y=BAN

(t)(x))) 
 

Boosting-Multi TAN algorithm: GTAN is proposed 
by Hongbo et al. (2004). GTAN used conditional 
mutual information as CI tests to measure the average 

information between two nodes when the statuses of 
some values are changed by the condition-set C. When 
I (xi, xj|{c}) is larger than a certain threshold valueε , 
we choose the edge to the BN structure to form TAN. 
Start-edge and ε are two important parameters In 
GTAN. Different start-edges can construct different 
TANs. GTAN classifier is unstable that can be 
combined with a quite strong learning algorithm by 
boosting. 

The Boosting-MultiTAN algorithm may be 
characterized by the way in which the hypothesis 
weights wi are selected and by the example weight 
update step. 
 

Boosting-MultiTAN (Dataset, T):  Input: sequence of 
N example Dataset = {(x1, y1),…, (xN,yN)} with labels 
yi∈Y={1,…,k}, integer T specifying number of 
iterations. 
 

 Initialize w
 (1)

i=1/N for all i, TrainData-1=Dataset 
 Start-edge = 1; t = 1; l = 1 
While ((t≤T) and (l≤2T)): 
 
• Use TrainData-t and start-edge call GTAN, 

providing it with the distribution 
• Get back a hypothesis TAN

 (t)
: X�Y 

• Calculate the error of TAN
 (t): e (t)

 =∑
N

i=1��
(�)

 I (yi≠
TAN

 (t)
 (xi)) 

• If e (t)
 ≥0.5, then set T=t-1 and abort loop 

• Set µ (t)
=e

(t)
/(1-e

(t))  

• Updating distribution w
(t+1)

i=w
(t)

i( µ
(t))s

, where 

s=1-I(yi≠TAN
(t)(xi)) 

• Normalize w
 (t+1)

i, to sum to 1 
• t = t+1, l = l+1, start-edge = start-edge+n/2T. 
• End while 
 

 Output the final hypothesis:  
 H(x)=argmaxyεY(∑

T
t=1(log(1/µ (t)))I(y=TAN

(t)(x))). 

 

PROPOSED METHODLOGY 

 

Recently, several authors have proposed theories 
for the effectiveness of boosting based on bias plus 
variance decomposition of classification error. In this 
decomposition we can view the expected error of a 
learning algorithm on a particular target function and 
training set size as having three components: 

 
• A bias term measuring how close the average 

classifier produced by the learning algorithm will 
be to the target function  

• A variance term measuring how much each of the 
learning algorithm's guesses will vary with respect 
to each other (how often they disagree) 
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Fig. 1: The proposed ensemble 
 
• A term measuring the minimum classification error 

associated with the Bayes optimal classifier for the 
target function (this term is sometimes referred to 
as the intrinsic target noise)  
 
Boosting appears to reduce both bias and variance. 

After a base model is trained, misclassified training 
examples have their weights increased and correctly 
classified examples have their weights decreased for the 
purpose of training the next base model. Clearly, 
boosting attempts to correct the bias of the most 
recently constructed base model by focusing more 
attention on the examples that it misclassified. This 
ability to reduce bias enables boosting to work 
especially well with high-bias, low-variance base 
models. 

For additional improvement of the prediction of a 
classifier, we suggest combing Boosting-BAN and 
Boosting-MultiTAN  methodology with sum rule 
voting  (Vote B&B). When  the  sum  rule  is  used each  

sub-ensemble has to give a confidence value for each 
candidate. In our algorithm, voters express the degree 
of their preference using as confidence score the 
probabilities of sub-ensemble prediction. Next all 
confidence values are added for each candidate and the 
candidate with the highest sum wins the election. The 
proposed ensemble is schematically presented in Fig. 1, 
where hi is the produced hypothesis of each sub-
ensemble, x the instance for classification and y* the 
final prediction of the proposed ensemble.  

It has been observed that for Boosting-BAN and 
Boosting-MultiTAN, an increase in committee size 
(sub-classifiers) usually leads to a decrease in 
prediction error, but the relative impact of each 
successive addition to a committee is ever diminishing. 
Most of the effect of each technique is obtained by the 
first few committee members (Freund and Schapire, 
1996). We used 10 sub-classifiers for each sub-
ensemble for the proposed algorithm.  

The proposed ensemble is effective owing to 
representational reason. The hypothesis space h may 
not contain the true function f (mapping each instance 
to its real class), but several good approximations. 
Then, by taking weighted combinations of these 
approximations, classifiers that lie outside of h may be 
represented.  

It must be also mentioned that the proposed 
ensemble can be easily parallelized (one machine for 
each sub-ensemble). This parallel execution of the 
presented ensemble can reduce the training time in half. 

 
COMPARISONS AND RESULTS 

 

 For the comparisons of our study, we used 20 
well-known datasets mainly from many domains from 
the UCI repository (UCI Machine Learning Repository, 
http://www.ics.uci.edu/~mlearn/ML Repository html.). 
These  datasets  were  hand selected so as to come from  

 
Table 1: Datasets used in the experiments 
No Dataset Instances Classes Attributes Missing values 
1 Labor 57 2 16 √ 
2 Zoo 101 7 16 × 
3 Promoters 106 2 57 × 
4 Iris 150 3 4 × 
5 Hepatitis 155 2 19 √ 
6 Sonar 208 2 60 × 
7 Glass 214 7 9 × 
8 Cleve 303 2 13 √ 
9 Ionosphere 351 2 34 × 
10 House-votes-84 435 2 16 √ 
11 Votes1 435 2 15 √ 
12 Crx 690 2 15 √ 
13 Breast-cancer-w 699 2 9 √ 
14 Pima-indians-di 768 2 8 × 
15 Anneal 898 6 6 √ 
16 German 1000 2 20 × 
17 Hypothyroid 3163 2 25 √ 
18 Splice 3190 3 60 × 
19 Kr-rs-kp 3196 2 36 × 
20 Mushroom 8124 2 22 × 
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Table 2: Experimental results 
No Dataset TAN BAN Boosting-multiTAN Boosting-BAN Vote B&B 
1 Labor 95.8 95.1 95 96.8 96.4 
2 Zoo 95.1 94.7 96.8 97.2 97.7 
3 Promoters 95.2 95.5 95.3 95.3 95.3 
4 Iris 96 95.7 96.7 97.1 96.9 
5 Hepatitis 80.4 81.8 81.9 81.1 81.2 
6 Sonar 83.3 83.5 87.5 87.1 87.5 
7 Glass 64.5 66.3 66.8 68.5 68.9 
8 Cleve 77.6 79.7 80.3 81.2 81.5 
9 Ionosphere 92 92.4 92.0 93.0 92.4 
10 House-votes-84 95.1 95.7 94.9 95.3 95.3 
11 Votes1 94.2 95.6 94.7 95.1 95.8 
12 Crx 85.5 85.5 85.6 86.5 85.8 
13 Breast-cancer-w 96.6 96.7 96.1 96.8 96.6 
14 Pima-Indians-di 73.6 73.9 74.7 75.5 75.8 
15 Anneal 89.5 89.9 95.2 94.1 92.6 
16 German 70.4 69.6 74.6 75.1 75.6 
17 Hypothyroid 93.8 93.8 93.8 93.6 93.8 
18 Splice 96.0 96.0 95.7 96.0 95.8 
19 Kr-rs-kp 99.1 99.1 99.6 99.4 99.4 
20 Mushroom 99.8 100 99.9 100 100 
 

real-world problems and to vary in characteristics. 
Thus, we have used datasets from the domains of: 
pattern recognition (anneal, iris, mushroom, zoo), 
image recognition (ionosphere, sonar), computer games 
(kr-vs-kp).  

Table 1 is a brief description of these datasets 
presenting the number of output classes, the type of the 
features and the number of examples. In order to 
calculate the classifiers’ accuracy, the whole training 
set was divided into ten mutually exclusive and equal-
sized subsets and for each subset the classifier was 
trained on the union of all of the other subsets. Then, 
cross validation was run 10 times for each algorithm 
and the median value of the 10-cross validations was 
calculated. 

The time complexity of the proposed ensemble is 
less than both Boosting-BAN and Boosting-MultiTAN 
with 25 sub-classifiers. This happens because we use 10 
sub-classifiers for each sub-ensemble (totally 20). The 
proposed ensemble also uses less time for training than 
both Multiboost and Décorare combining methods.  

In our experiments, we set the number of rounds of 
boosting to be T = 100. 

We compare the presented methodology with 
TAN, BAN, Boosting-BAN and Boosting-MultiTAN 
method. In the last raw of the Table 2 one can see the 
aggregated results. 

The results of our  experiments  are  shown in 
Table 2. The figures indicate test correct rate averaged 
over multiple runs of each algorithm.  

The presented ensemble is significantly more 
accurate than single others in 8 out of the 20 datasets 
from Table 2, while it has significantly higher error rate 
in none dataset. BAN can only slightly increase the 
average accuracy of TAN without achieving 
significantly more accurate results. In addition, 
Boosting-   BAN     and    Boosting-MultiTAN      are 
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(b) 

 
Fig. 2: Comparison of three classifiers on two datasets 
 
significantly more accurate than single one in 6 and 3 
out of the 20 datasets respectively, while they have 
significantly higher error rate in none dataset. 

To sum up, the performance of the presented 
ensemble is more accurate than the other well-known 
ensembles. The proposed ensemble can achieve a 
reduction in error rate about 9% compared to simple 
TAN and BAN. 
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The differences are highlighted in Fig. 2, which 
compaires Boosting-BAN and Boosting-MultiTAN on 
two datasets, Pima-Indians-di and Promoters, as a 
function of the number of trials T. For T=1, Boosting-
BAN is identical to Boosting-MultiTAN and both are 
almost always inferior to Vote B&B. As T increases, 
the performance of Boosting-BAN and Boosting-
MultiTAN usually lead to a rapid degradation and then 
improve. 

An ensemble of classifiers is a set of classifiers 
whose individual decisions are combined in some way 
(typically by weighted or unweighted voting) to classify 
new examples. One of the most active areas of research 
in supervised learning has been to study methods for 
constructing good ensembles of classifiers. The main 
discovery is that ensembles are often much more 
accurate than the individual classifiers that make them 
up. The main reason is that many learning algorithms 
apply local optimization techniques, which may get 
stuck in local optima. For instance, decision trees 
employ a greedy local optimization approach and 
neural networks apply gradient descent techniques to 
minimize an error function over the training data. As a 
consequence even if the learning algorithm can in 
principle find the best hypothesis, we actually may not 
be able to find it. Building an ensemble may achieve a 
better approximation, even if no assurance of this is 
given. 
 

CONCLUSION 
 

Boosting-BAN classifier is considered stronger 
than Boosting-MultiTAN on noise-free data, however, 
there are strong empirical indications that Boosting-
MultiTAN is much more robust than Boosting-BAN in 
noisy settings. In this study we built an ensemble using 
a voting methodology of Boosting-BAN and Boosting-
MultiTAN ensembles. It was proved after a number of 
comparisons with other ensembles, that the proposed 
methodology gives better accuracy in most cases. The 
proposed ensemble has been demonstrated to (in 
general) achieve lower error than either Boosting-BAN 
or Boosting-MultiTAN when applied to a base learning 
algorithm and learning tasks for which there is 
sufficient scope for both bias and variance reduction. 
The proposed ensemble can achieve an increase in 
classification accuracy of the order of 9% to 16% 
compared to the tested base classifiers. 

Our approach answers to some extent such 
questions as generating uncorrelated classifiers and 
control the number of classifiers needed to improve 
accuracy in the ensemble of classifiers. While 
ensembles provide very accurate classifiers, too many 
classifiers in an ensemble may limit their practical 
application. To be feasible and competitive, it is 
important that the learning algorithms run in reasonable 

time. In our method, we limit the number of sub-
classifiers to 10 in each sub-ensemble. 

Finally, there are some open problems in ensemble 
of classifiers, such as how to understand and interpret 
the decision made by an ensemble of classifiers because 
an ensemble provides little insight into how it makes its 
decision. For learning tasks such as data mining 
applications where comprehensibility is crucial, voting 
methods normally result in incomprehensible classifier 
that can not be easily understood by end-users. These 
are the research topics we are currently working on and 
hope to report our findings in the near future. 
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