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Abstract: In the present study, the effect of waving bottom on the surface wave is studied. Basing on the 
fundamental equations of potential flow theory and boundary conditions, using the multiple scales perturbation 
method to derive the first-order and the second-order approximate equation which the fluid surface waves satisfied 
in the presence of waving bottom. Under the second-order approximation, the fluid surface waveform in first-order 
approximate equation is numerically simulated with MATLAB in the presence of different waving bottom form. 
The results show that: the fluid surface waveform is composed of a harmonic wave which has the same frequency 
with waving bottom and a pair of KdV solitary waves that spread to both the right and the left side when the waving 
bottom wave is a harmonic wave; and when the waving bottom is a solitary wave packet, it consists of a solitary 
wave which is closely related to the specific form of waving bottom and a couple of KdV solitary waves. With the 
development of time, three waves in fluid surface do not affect each other and they propagate independently. Thus it 
can be seen the waving bottom is effective for maintaining surface wave energy balance income and expenditure in 
the spreading process. 
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INTRODUCTION 

 
In the theoretical study of fluid surface waves, 

some considered the flow with a fixed bottom boundary 
and some considered the bottom boundary with spatial 
variation, however very few ones studied the time-
varying bottom boundary. But in practical problems, 
there are many phenomena associated with the waving 
bottom, such as the vibrational wall in the experiment 
of the non-propagating solitary wave (Cui et al., 1988, 
1991), the undulating substrate in the coating industry, 
a tsunami caused by seabed earthquake, the platform 
vibration in marine engineering and the movement of 
seabed sediment (Zhong and Yan, 1992; Jiang et al., 
2004), etc. The basements of these phenomena often 
change with time. In addition, the bottom changes with 
time also exist in elastic bottom. The understanding of 
the free vibration characteristics of the fluid-structure 
interaction plays a significant role in various branches 
of engineering, for example, the propellant in space 
vehicles can be free from resonance, large-capacity oil 
containers in the petrochemical industry can be kept 
from the damage of earthquakes, very large floating oil 
storage tanks, ships and submarines can be avoided or 
reduced localized vibrations (Mohapatra and Sahoo, 
2011). Therefore, the theoretical and numerical studies 
of the issue are of great practical significance. 

There was a substantial growth in the theoretical 
and numerical studies of the fluid surface wave in the 
past decades. Madsen and Mei (1969) have numerical 
calculated the solitary waves propagating on the uneven 
bottom and found splitting phenomenon of solitary 
wave. Johnson (1973) researched solitary wave 
propagation over slowly varying bottom and obtained 
the height formula surface rised when a solitary wave 
was split into N solitary waves. Davies (1982) used 
perturbation theory to study the reflection problem of 
the surface water wave energy which was caused by 
seabed fluctuations. Matsuno (1993) theoretically 
studied the nonlinear evolution of two-dimensional, 
incompressible, inviscid, irrotational fluid surface 
gravity  waves  in  any depth  uneven bottom. Mallard 
et al. (1977) discussed the wave propagation over a 
flexible elastic bottom and found that the wave 
characteristic was significantly affected by shear 
modulus of elastic bed. Dawson (1978) analyzed the 
wave motion over an elastic bed including the effect of 
soil inertia. Davies and Heathershaw (1984) studied the 
propagation of surface wave over sinusoidally varying 
topography and found that between topography and 
surface-wave exists resonant interaction. Zhang and 
Zhu (1997) studied resonant transcritical flow over a 
wavy bed, for a finite-extent bed, it is shown that the 
linear  model  is  valid  and  a  steady  state  exists  even  
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Fig. 1: Schematic representation of the flow geometry 
 
within the resonant regime, with an “upstream 
influence”. Wu et al. (2006a, b) used the perturbation 
method  to  derive  the  fKdV equation which nonlinear 
surface wave met, numerically simulated by MATLAB 
software combined with pseudo-spectral method and 
analyzed the impact of varying bed and waving bed on 
the nonlinear surface wave. Zhong and Yan (1992) 
studied the influence of waving bed on the surface 
solitary wave theoretically. Mohapatra and Sahoo 
(2011) developed a hydroelastic model to deal with 
surface gravity wave interaction with an elastic bed 
based on the small amplitude water wave theory and 
plate deflection in finite water depth. In all the studies 
mentioned in the brief review above, they focuses on 
the influence of the fixed bottom and varying bottom on 
the fluid surface wave and their research methods are 
diverse. But the extension to the fluid surface wave 
propagating on the waving bottom has, to our 
knowledge, been considered very few. With this present 
situation, the study will discuss the effect of waving 
bottom on the surface wave. Assume that the waving 
bottom wave is long wave and small amplitude. 

In this study, the surface wave propagation over a 
waving bottom is analyzed. Using the multiple scales 
perturbation method to derive the first-order and the 
second-order approximate equation fluid surface waves 
satisfied in the presence of waving bottom. The fluid 
surface waveform is simulated with the MATLAB 
software in the presence of different waving bottom 
form. 
 

GOVERNING EQUATION AND 
PERTURBATION SOLVING 

 
Physical model: In the study, we consider the two-
dimensional motion of irrotational, inviscid, 
incompressible ideal fluid and bottom boundary is 
waving bottom. The physical model is shown in Fig. 1. 
The depth of the fluid is h without waving bottom. ζ(x, 
t) represents the free surface elevation, aη (x, t) is the 
function of waving bottom (where α is the amplitude of 
waving bottom), φ = (x, z, t) is the disturbed velocity 
potential of the fluid. 

Assuming that the waving bottom and the fluid 
surface displacement are of small amplitude. 
Introducing small parameter ε: 

 
h

max
ζε =                                                       (1) 

 
The waving bottom boundary is given as: 

0 ( , )z h ha x tε η= − +                                            (2) 
 
Governing equation: Ideal fluid flow velocity potential 
and surface displacement satisfy the basic equations and 
boundary conditions (The basic equations and boundary 
conditions ideal fluid flow velocity potential and surface 
displacement satisfied can be shown) as follows: 
 

0xx zzϕ ϕ+ =         0z z ζ< <                     (3a) 
 

( ) 0z x x tahϕ ε ϕ η η− + =     0z z=                    (3b) 
 

0t x x zζ ϕ ζ ϕ+ − =        z ζ=                    (3c) 
 

2 21 ( ) 0
2t x zgϕ ζ ϕ ϕ+ + + =     z ζ=                   (3d) 

 
where, g is the acceleration of gravity. 
 
Dimensionless equation: φ was expanded into Taylor 
series at z = -h  in Eq. (3b) and introduce the following 
dimensionless variables: 
 

hzz =∗ , hxx ε=∗ , thgt ε=∗ , ∗= φεφ ghh , 
∗= ζεζ h  

 
So the Eq. (3a)-(3d) can be transformed into the 

following (the asterisk* is omitted): 
 

0xx zzεϕ ϕ+ =   1 z ζ− < <                                   (4a) 
 

2 2 2 31( ) ( ) 0
2z zz x x t zzza a Oϕ ε ϕ η εϕ η η ε ϕ η ε+ − − + + =

         1z = −                                                                 (4b) 
 

2 0t x x zεζ ε ϕ ζ ϕ+ − =      z εζ=                      (4c) 
 

2 21 ( ) 0
2t x zϕ ζ εϕ ϕ+ + + =    z εζ=                       (4d) 

 
Processing of the velocity potential φ : Since φ  is an 
analytic function, it can be expanded to the power series 
of coordinates in the vertical direction. 
 

0
( , , ) ( 1) ( , )n

n
n

x z t z x tφ ϕ
∞

=

= +∑                            (5) 

 
Using the Eq. (4a), (4b) and (5), we can obtain the 

expression of the velocity potential when the error is 
O(ε3): 
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Solving by perturbation method: Introducing the 
slowly varying time scale:  τ = εt  and asymptotically 
expanding ζ  and  0x by the small parameter ε: 
 

L+++= 2
2

10 ζεεζζζ                         (7a) 
 

L+++= 2
2

100 uuux εεφ                        (7b) 
 
Substituting τ  and Eq. (7a-7b) into the Eq. (4c-4d), 

the following approximate equations of each order can 
be obtained with the perturbation method. 
The first order approximate equation can be given as: 
 

000 =−+ txt au ηζ                                (8a) 
 

000 =+ xtu ζ                                       (8b) 
 

The second order approximate equation has the form of: 
 

( )1 1 0 0 0 0

0 0

1
6
1
2

t x xxtx

x x x

u u u

au au a xt

τζ ζ ζ

η η η

⎡ ⎤+ = − + −⎢ ⎥⎣ ⎦

+ + +

             (9a) 

 
2

1 1 0 0 0
1 1[ ( ) ]
2 2t x x xxt xttu u u u aτζ η+ = − + − −          (9b) 

 
• When the waving bottom is a harmonic wave: 

αη(x, t) = α cos b (x – c0t), where b and c0 are the 
wave number and the phase velocity of the solitary 
wave respectively, the solutions of first order 
approximation equations are: 
 

2
0

0 02
0

1 2

cos ( )
1
( , ) ( , )

ac b x c t
c

f x t f x t

ζ

τ τ

= −
−

+ − + +

                 (10a) 
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0

1 2
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1
( , ) ( , )
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c

f x t f x tτ τ

= −
−

+ − − +

                      (10b) 

 
When the waving bottom is solitary wave packet: 
αη(x, t) = α sec h2 b (x – c0t), the solutions of first order 
approximation equations are: 

2
20

0 02
0

1 2

sec ( )
1

( , ) ( , )

ac h b x c t
c

f x t f x t

ζ

τ τ

= −
−

+ − + +

                 (11a) 

20
0 02

0

1 2

sec ( )
1

( , ) ( , )

acu h b x c t
c
f x t f x tτ τ

= −
−
+ − − +

                 (11b) 

 
Substituting the solutions of first order 

approximation equations Eq. (10a-10b) or Eq. (11a-11b) 
into the Eq. (9a-9b), according to the multi-scale 
perturbation method, the following equations are 
obtained from the conditions for no secular term to 
appear in second order approximate equations: 

 

1 1 1
12 3 0
3r rrrf ff fτ + + =                         (12a) 

 

0
3
132 222 =++− llll ffff τ

                      (12b) 

 
where, r = x - t, l = x + t, Eq. (12a-12b) are two standard 
KdV equations, the solution can be obtained by the 
traveling wave method, f1 and f2 represents the KdV 
solitary wave which spreads respectively towards the 
right and the left side. 

In the next section, under the second-order 
approximation, the fluid surface waveform is simulated 
with MATLAB in the presence of different waving 
bottom form and we analyze the influence of waving 
bottom on the fluid surface wave. 
 

NUMERICAL SIMULATION RESULTS AND 
DISCUSSION 

 
In the study, we give the following parameters 

assignments: α ± 0.8, b = 0.6, c0 = 0.53, ε 0.09, then we 
get specific surface wave function. The simulation 
results for a harmonic waving bottom wave, a convex-
waving bottom wave and a concave-waving bottom 
wave in different time are shown as follows. 
 
The waving bottom bed is a harmonic wave form: 
The waving bottom bed is a harmonic wave form: aη(x, 
t) = a cos b (x – c0t), the simulation results are shown in 
Fig. 2. 

Figure 2a and c show the waterfall of fluid surface 
waveform in different time scales. It can be seen from 
the figures that the fluid surface waveform is composed 
of a simple harmonic wave and a pair of KdV solitary 
waves. Over time, part of the superimposed waveform 
of the harmonic wave and solitary waves change and the 
amplitude of surface wave appears to the maximum. 
After superposition, the harmonic wave of fluid surface 
recovers back to the original shape. It suggests that they  
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Fig. 2: The simulation results for a harmonic waving bottom 

wave, (a) Waterfall of fluid surface waveform; (b) 
Fluid surface waveform at 2, (c) Waterfall of fluid 
surface waveform, (d) Fluid surface  waveform at 10 

 
 

(a)  
 

 
 

 (b)  
 

Fig. 3: Simulation results for a convex-waving bottom wave, 
(a) Waterfall of fluid surface waveform, (b) Fluid 
surface waveform at 20 

 
propagate independently, not interfere with each other. 
In Fig. 2b and d surface wave elevation ζ in the presence 
of a waving bottom bed is plotted at 2 and 10 
respectively. The fluid surface wave is also composed of 
simple harmonic wave (shw) and a pair of KdV solitary 
waves (f1, f2) and they propagate independently, not 
interfere with each other. It can be known that 
superposition of simple harmonic wave and the solitary 
wave propagate forward which is clear from the points 
(a + b + c = d, m + n + o = p) in the diagram. And 
superimposed waveform changed, the other was done 
not. It is observed that the amplitude of the waves in the 
fluid surface is much larger compared to the waves in 
the waving bottom bed. 
 
The waving bottom bed is a solitary wave packet 
form: The waving bottom bed is a solitary wave packet 
form: aη(x, t) = a cos h2 b (x – c0t), The simulation 
results for the convex-waving bottom wave and the 
concave-waving bottom wave in different times are 
shown in Fig. 3 and 4 respectively. 

Figure 3a shows the waterfall of fluid surface 
waveform when the waving bottom bed is a convex 
solitary wave packet. It can be observed that the wave of 
the fluid surface is composed of three parts, the 
upstream  is  the  KdV solitary  wave  spreads rightward,  
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(b)  

Fig. 4: Simulation results for a concave-waving bottom wave, 
(a) Waterfall of fluid surface waveform, (b) Fluid 
surface waveform at 20 

 
the downstream is the KdV solitary wave spreads 
leftward, the middle one is the solitary wave propagates 
to the right which is closely related to the waving 
bottom. At the initial moment, three solitary waves 
superposed with each other and made the amplitude of 
surface waveform occurs the maximum and then they 
separated and spread independently. When the waving 
bottom bed is a concave solitary wave packet, the 
simulated result is shown in Fig. 4a; the waveform of 
the fluid surface also consists of three solitary waves, 
which includes two KdV solitary waves and one 
concave-soliton. It is clear from Fig. 3b and 4b that the 
amplitudes of the waves in the fluid surface are much 
larger than the waves in the waving bottom. However, 
compare Fig. 3a with Fig. 4a, it can be observed that the 
former surface wave appears as convex solitary wave 
and the latter one appears as concave solitary wave. It 
seems that the emergence of convex solitary wave and 
concave solitary wave is closely related to the specific 
form of waving bottom. Along with time, the amplitude 
of each solitary wave does not changed. So it suggests 
that the waving bottom is effective for maintaining 
surface wave energy balance income and expenditure in 
spreading process. 

CONCLUSION 
 

In the present study, the effect of waving bottom 
on the fluid surface wave was investigated. The first-
order and the second-order approximate equation which 
the fluid surface waves satisfied in the presence of 
waving bottom are obtained by the multiple scales 
perturbation method. Under the second-order 
approximation, the solution of first-order approximate 
equation was obtained and then was simulated by 
MATLAB Software. Simulation results shows that: the 
fluid surface wave consists of a harmonic wave which 
has the same frequency with waving bottom and a pair 
of KdV solitary waves when the waving bottom wave is 
a harmonic wave; and the fluid surface waveform is 
composed of three parts when the waving bottom is a 
solitary wave packet, the upstream is the KdV solitary 
wave spreads rightward, the downstream is the KdV 
solitary wave spreads leftward, the middle is the 
solitary wave propagates to the right which is closely 
related to the waving bottom. Along with time, the 
amplitude of each wave does not changed. It suggests 
that three waves do not affect each other and they 
propagate independently. So it seems that the waving 
bottom is effective for maintaining surface wave energy 
balance income and expenditure in spreading process. 
We also found that the specific form of waving bottom 
plays a significant role in the evolution of fluid surface 
wave. For the second order case, the effect of waving 
bottom on the fluid surface wave will be discussed 
separately. 
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