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Abstract: This study defined the ring F2+νF2, as well as its complete weight enumerator and symmetric weight 
enumerator. By introducing a special variable t, we deduced two Macwilliams identities for the two weight 
enumerators of the linear code and the dual code over the ring F2+νF2. 
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INTRODUCTION 

 
A great deal of attention has been paid to codes 

over finite rings from the 1990s since a landmark paper 
(Hammons, 1994), which showed that certain nonlinear 
binary codes can be constructed from Z4-linear codes via 
the Gray map and that nonlinear binary codes (Preparata 
and Kerdock codes) satisfy with MacWilliams identity. 
The MacWilliams identity, describing the mutual 
relationship of the weight distribution between the linear 
codes and its dual codes, has a wide application. 
Reference (MacWilliams, 1963) presented the 
MacWilliams identity for Hamming weight of linear 
codes over finite field Fq. Wan (1997) made 
systematical description of the MacWilliams identity 
with all weight over ring Z4. Zhu (2003) reported the 
MacWilliams identity of a symmetric form over ring Zk. 
Yu and Zhu (2006) researched the MacWilliams identity 
over the ring F2 + uF2. Recently, Yildiz et al. (2004) 
made a research on the linear codes and the 
MacWilliams identity of the complete weight 
enumerator over the ring F2+ uF2+νF2+uνF2 
(Karadeniz and Yildiz, 2010). In this study, firstly we 
give a ring R = F2+νF2, where ν2 

= ν. Secondly, by 
introducing a special variable t  we obtain the 
MacWilliams identity for the complete weight 
enumerator and the symmetric weight enumerator in 
virtue of the method in Karadeniz and Yildiz (2010). 
Finally, we verify the two identities by some examples 
and explain their functions. 
 

PRELIMINARIES 
 
Let: 
 

{ } { }2
2 2 20, , 0,1, ,1R F vF a bv v a b F v v= + = + = ∈ = +

 

Its ideal is:  
{ } { } { }0 10 0, 0,1, ,1

v
I I v I v v= ⊆ = ⊆ = +  

 
So, R belongs to be a finite chain ring. 
Suppose  Rn = {(x1, x2, …, xn)/xi ∈ R, i = 1, 2, … , n} 

Every nonempty subset of Ring Rn is called to be R 
code. The linear code C  with the length of  n over R is 
defined as the R- submodule of Rn. 

 

1 2 1 2( , , , ), ( , , , )∀ = = ∈L L
n

n nx x x x y y y y R  

 
Define their inner product by: 
 

1 1 2 2⋅ = + + +L
n n

x y x y x y x y  

 
If x⋅y = 0, then x, y can be called to be mutual 

orthogonal. Let: 
  

{ 0, }⊥ = ∈ ⋅ = ∀ ∈nC x R x y y C  

 
It is easy to prove that C┴  is the linear code over R, 

referred as the dual code of C. Then C is called as a self-
orthogonal code. If C = C┴, then C  is self-orthogonal. 

Firstly we introduce the concept of the complete 
weight enumerator. 

 
Define 1:  Suppose C is a linear code of length n over 
R, where r is one element of R. For 

1 2( , , , )∀ = ∈L
n

nx x x x R , 
1

,
1

( ) δ
−

=

= ∑ i

n

r x r

i

w x  is called as 

the weight of x  to r, where δ is the Kronecker function 
δα, b = {1 α = b /0 α ≠ b. So we define: 
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0 1 1( , , , )+

∈ ∈

= ∑∏ r

C

w c
we v v r

c C r R
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as the complete weight enumerator of the linear code C. 
In the following, in order to introduce the concept 

of the symmetric weight enumerator, the elements of 
ring R should be classified.  

The elements of ring R can be divided into the 
following three sets: 
 

0 1 2{0}, {1,1 }, { }D D v D v= = + =  

 
Define the map: I:R→{0,1,2} 
 

ra I(r) = I, if r∈Di 

 

Define 2: Suppose C  is a linear code over R . Then: 
 

0 1 2 (0) (1) (1 ) ( )( , , ) ( , , , )
CC

wewe I I I v I vS X X X C X X X X+=  

 

can be called as the symmetric weight enumerator of 
code C. 
 

MACWILLIAMS IDENTITY 
 

In order to obtain two weight enumerators of 
MacWilliams identity, we introduce a special variable t. 
Let tν = −1and ta+b = ta⋅ tb, where a, b∈R. Obviously, 
t
0=t2=1. 
 
Lemma 1: For any non-zero ideal J in R, there exists

0
∈

=∑ k

k J

t . 

 
Proof:  0 0

v

k v

k I

t t t
∈

= + =∑  

 

1

0 1 1 1 1 0k v v

k I

t t t t t t t+

∈

= + + + = + − − =∑  

 
Theorem 2: Suppose C is a linear code of length n  over 
R and  C┴   is the dual code of C. Then: 

 

0 1 1 0 1 1

1
( , , , ) ( ,

CC
we wev v v vC X X X X C X X X X

C
⊥ + += + + +

 
 

0 1 1 0 1 1 0 1 1, , )
v v v v v v

X tX X tX X X X X X tX X tX+ + ++ − − − + − − − +  

 
Proof: Define the function of C: 
 

( )( ) ⋅

∈∈

= ∑ ∏ r

n

w xc x

r

r Rx R

F c t X  

Then: 
 

( ) ( )( ) r rw x w xc x c x

r r

c C c C c Cr R r Rx C x C

F c t X t X
⊥ ⊥

⋅ ⋅
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( ) ( )

⊥ ⊥

⋅ ⋅

∈ ∈∈ ∈∈ ∉

= +∑ ∑ ∑ ∑∏ ∏r rw x w xc x c x

r r

c C c Cr R r Rx C x C

X t X t                (1) 

 
For every fixed x ∈ Rn, study the function: 

:
( )

→

= ⋅a
x

x

C R
f

c f c c x
 

 
Obviously, fx is a module homomorphism. We 

observed that: 
 

( ) 0, ⊥= ⇔ ⋅ = ∀ ∈ ⇔ ∈xKer f C c x c C x C  

 
so the first part of formula (1) can be written as: 
 

( ) ( )

⊥ ⊥

⋅

∈∈ ∈∈ ∈

=∑ ∑ ∑∏ ∏r rw x w xc x

r r

c Cr R r Rx C x C

X t C X  

 
If  ⊥∉x C , then Ker (fx) ≠ C. So Im(fx) is a non-

zero ideal of R. Thus by virtue of the Lemma 1, we can 
obtain that, for every such x, there exists 0⋅

∈

=∑ c x

c C

t . 

Therefore, the second part of the formula (1) equals to 
zero. 
So the formula (1) can be written as: 
 

( )( )
⊥∈ ∈∈

=∑ ∑ ∏ rw x

r

c C r Rx C

F c C X  

 
Then there exists the identity: 
 

0 1 1

1
( , , , ) ( )⊥ +

∈

= ∑C
we v v

c C

C X X X X F c
C

             (2) 

 
Let’s transform the expression of F(c) again. By 

means of Konecker function, we get: 
 

1 2
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( , , , )
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L
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Substituting the above expressions into the formula 

(2), we have: 
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0 1 1( , , , )
C
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1
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Theorem 3: Suppose C is a linear code of length n over 
R, we can obtain 

0 1 2 0 1 2 0 2 0 2

1
( , , ) ( 2 , , )
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= + + − −

   

 
Proof: According to the definition of the symmetric 
weight enumerator and Theorem 2, we know: 
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( )0 1 2 0 2 0 2 0 2

1
2 , , ,

C
w eC X X X X X X X X X
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( )0 1 2 0 2 0 2

1
2 , ,

C
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EXAMPLE 
 

In the following, we will give some examples to 
illustrate the application of Theorem 2 and 3. 
 
Proof: Obviously:  

 
{(0, 0), (1,1), ( , ), (1 ,1 )}= + +C v v v v   

 
is the linear code over R, with its complete weight 
enumerator and symmetric weight enumerator being, 
respectively, 
 

2 2 2 2
0 1 1 0 1 1( , , , )+ += + + +

C
we v v v v

C X X X X X X X X  

 
And: 

 
2 2 2

0 1 2 0 1 2( , , ) 2= + +
C

weS X X X X X X
 

 
Then according to Theorem 2, the complete weight 

enumerator of the dual code C┴ is obtained to be: 
 

2
0 1 1 0 1 1

1
( , , , ) [( )

4C
we v v v v

C X X X X X X X X
⊥ + += + + +

2 2
0 1 1 0 1 1( ) ( )v v v vX tX X tX X X X X+ ++ + − − + − + −  

 
2

0 1 1( ) ]v vX tX X tX ++ − − +  

2 2 2 2
0 1 1+= + + +v vX X X X  

 
Therefore, we can get C┴ = C, that is to say, C is a 

self-dual code. 
 Likewise, based on Theorem 3.3, we get the 

symmetric weight enumerator of the dual code C┴, 
 

0 1 2 0 1 2 0 2 0 2

1
( , , ) ( 2 , , )

4 CC
weweS X X X S X X X X X X X

⊥
= + + − −

2 2 2
0 1 2 0 2 0 2

1
[( 2 ) 2( ) ( ) ]

4
X X X X X X X= + + + − + −  

2 2 2
0 1 2 0 1 1 22X X X X X X X= + + + +  
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