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Abstract: This study aims to solve the problem of detecting anomalies in big data. A border-based Gird Partition
(BGP) algorithm was proposed. The BGP algorithm focuses on calculating the Local Outlier Factor (LOF) for big
data in a distributed environment. It splits the data into intersected subsets, then allocates these subsets to the slave
nodes in a distributed environment. Some parts of these subsets are replicated between slave nodes. The slave nodes
calculate the LOF for each subset that it owns. The splitting of the data between the slave nodes is done in grid-
based without considering the size of the data that will be assigned to every slave node. The BGP algorithm results
in un-balanced distribution of the subsets between slave nodes. To overcome this problem a modification on the
BGP algorithm is proposed to take in consideration the size of the data that will be assigned to every slave node. The
modified algorithm called Balanced boarder-based Gird Partition algorithm (BBGP). BBGP splits the data between
the slave node equally. So that all the slave nodes will do balanced processing for calculating the LOF for the data.
In the end, we evaluate the performance of the two algorithms through a series of simulation experiments over real

data sets.
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INTRODUCTION

Nowadays there is a huge growth in the area of Big
Data. A lot of information flows on the internet and a
lot of data are generated every day in our life. For many
social websites (e.g., Facebook and twitter), a huge
amount of information is generated every day. This
information must be processed and filtered to detect the
suspicions one from them. Suspicions information may
be noise or wrong data or maybe up normal one. The
process of detecting these types of information are
called outlier detection. According to (Hawkins, 1980),
“An outlier is an observation that deviates so much
from other observations as to arouse suspicion that it
was generated by a different mechanism”. Many other
studies and definitions have been proposed for outlier
detection e.g., top-n outlier (Ramaswamy et a/., 2000),
DB-outlier (Knox and Ng, 1998) and density-based
outlier (Breunig et al., 2000).

There exist lots of algorithms for the outlier
detection. Most of them focus on the centralized
processing of the data. Due to the huge increase in data
generated every day, this data will take a lot of time for
processing and detecting outliers. There are many
applications that time will be very critical for them
(e.g., Credit card Fraud detection). So, there is a need
for processing this data in a distributed environment,
not a centralized one.

This study focuses on the problem of processing
data in a distributed environment for detecting outliers.
We use density-based outlier (Breunig et al., 2000) for
detecting outliers. Density-based outlier has advantages
over Some other algorithms. Other algorithms label
every tuple as an outlier or not (Ramaswamy et al.,
2000) (Knox and Ng, 1998), on the other hand, density-
based algorithms measure the degree of being an outlier
for a tuple p with respect to its neighbors. For
measuring this degree for p we calculate its Local
Outlier Factor (LOF). LOF represents the degree of a
tuple to be outlier w.r.z its neighbors. Many real-world
applications proved that measuring the degree of
outlierness for p is more meaningful that marking p as
an outlier or not. There exist two studies in solving the
problem of distributed outlier detection (Lozano and
Acufia, 2005) (Bai et al., 2016). The authors in
(Lozano and Acufia, 2005) analyzed the process of
calculating the LOF and find that the step to calculate
the KDNeighbors (which is the matrix that contains the
elements of dataset D with its respective k-neighbors) is
the most exhaustive step that takes time and processing
power. They proposed a master-slave solution for this
problem that offloads all the KDNeighbors calculations
to the slaves to calculate it. The authors in Bai et al.
(2016) also proposed an algorithm that also solves the
problem of calculating LOF wusing distributed
environment. They divide all the datasets into grids and
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sends these grids to be processed by the slave nodes.
Their algorithm needs a communication between all the
slaves to handle all the neighbor tuples.

In this study, we proposed practical approaches for
calculating the LOF for tuples in a distributed
environment which can be summarized as follows:

We proposed a border-based Gird Partition (BGP)
algorithm which is based on the GBP on Bai et al.
(2016), this algorithm partition the dataset into subsets
and add a border to each subset of the dataset. The
tuples in these borders are replicated in each adjacent
subset.

We modified our BGP algorithm and proposed a
Balanced boarder-based Gird Partition algorithm
(BBGP). BBGP algorithm partition the tuples between
slaves in a balanced way to distribute the workload to
all the slaves equally and utilize the resources in every
slave.

We evaluate the performance of the proposed
approaches through a series of simulation experiments
over real data sets. The experimental results show that
our proposed approaches give better results for
calculating the LOF for the tuples in comparing with
Bai et al. (2016).

Many approaches for outlier detection were
proposed, depending on the type of model they learn
(non-parametric model or statistical) (Rajasegarar
et al., 2008) Non-parametric techniques have a lot of
types of data clustering, Distance-based, Density-based
and rule-based approaches. data clustering approaches
aim to find groups of similar data points where each
group of data points is well separated. This approach
was first intended to cluster a group of points but after
that, it wasused to detect outliers e.g., Aggarwal
et al. (2003), Cao et al. (2006) and Guha et al. (2003).
Distance-based approaches were proposed to detect
outliers in a group of points based on the distance
between points. Points out of the distance are supposed
to be outliers e.g.,, Knox and Ng (1998). These
approaches have an important problem with finding the
outliers in a group of points with multi distances.
Density-based approaches solve the problem of the
distance based approaches by finding the outliers
depend on the density of each group of points. Each
point calculates its density depends on the other points
near to it. The author in Breunig et al. (2000) proposed
a number that measures the degree of each point of
being an outlier this number is called LOF (local outlier
factor). Some techniques improve the detection
accuracy of LOF by changing the way k-NNs are
computed (Tang, et al., 2002) so that it can cover a
wider range of outlier types and finding a symmetric
neighborhood relationship (Jin et al., 2006).

For the problem of distributed outlier detection
there exist two studies (Lozano and Acufia, 2005; Bai
et al., 2016). In Lozano and Acufia (2005) the authors
proposed a distributed algorithm for calculating LOF.
They analyzed the LOF algorithm and find that the
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most exhaustive step that requires time is the step of
calculating KDNeighbors (which is the matrix that
contains the elements of dataset D with its respective k-
neighbors). For this reason, they attempt to paralyze
this step. The architecture is composed of master and
slaves, the master distributes the data to all the slave.
Each slave calculates KDNeighbors for his local data
and sends the results to the master. The master collects
the partial KDNeighbors and finds the KDNeighbors
matrix, then computes the reachability and LOF.
Clearly, this approach is not suitable for distributed
outlier detection on large-scale data, because all the
data are combined in the last step and processed to
compute the LOF for each tuple (centrally on the
master node). The master node becomes a bottleneck
when the data is large. In Bai ef al. (2016) the authors
also proposed a distributed algorithm for calculating
LOF. Their architecture is also composed of master and
slaves. They proposed Gird-Based Partition algorithm
(GBP) for data portioning between slaves. In GBP, the
author first splits the whole dataset into isometric grids
considering the dimensionality of the dataset . for each
dimension the author splits this dimension into several
isometric segments (the number of segments is denoted
by s). Then, the whole space is split into s grids. The
author set s as the smallest number that satisfies s* > |N]
where || is the number of slave nodes.

They propose also the Distributed LOF Computing
method (DLC). Each slave generates LOF for most of
the tuples in it. The boarder tuples are then transmitted
between slaves to calculated its LOF efficiently then all
the LOFs for the tuples are sent back to the master
node. This approach has some drawbacks in two parts,
first in the Gird-Based Partition algorithm the authors
partition the data to the slaves without taking in
consideration the data distribution which makes the
slaves unbalanced, some slaves have a lot of data with
respect to the others. Second, the cross-border tuples
are sent over the network many times which consumes
network and every time a new tuple is sent to the salve
the neighbors for this tuple recalculate the LOF for
them which consumes time and processing power.

Recently, there also emerge some outlier detection
algorithms for special purposes, such as high
dimensional data (Aggarwal and Yu, 2001), streaming
data (Kontaki et al., 2011) and uncertain data
(Aggarwal and Yu, 2008).

MATERIALS AND METHODS

Local Outlier Factor (LOF): In this section, we will
use the density based outlier detection algorithm to
detect the outlier tuples. To measure the outlierness of
each tuple we will use the LOF algorithm. The process
of calculating the LOF takes a lot of time and
processing power. We will use a distributed
environment solution to distribute the processing
between many nodes. So that they calculate the LOF in
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Fig. 1: The k-distance of point p given k =4

parallel which will reduce the time. We will first
describe how we will calculate the LOF of tuples then
we will give in detail the system flow for the distributed
calculation of the LOF in a distributed environment in
the next section.

Given a dataset D in d-dimensional space (the size
of D is |D| ), a tuple p is donated as p {
pll1].p[2],...p[d]}. The distance between two tuples p,q
is:

dis(p,q) =

d
> (olil - alily?

1)

before we describe how the LOF is calculated there
must be some definitions that need to be explained.

Definition 1: (k-distance of tuple p) Given a positive
integer £, the k-distance of a tuple o (denoted as disi(0))
is the furthest distance among the k-nearest neighbors
of a data point p as shown in Fig. 1.

K-distance (p) is defined as the distance dis(p,0)
between p & o such that:

for at least £ objects ¢ € D\{p} it holds that d(p,q) <
d(p,0)

for at most k-1 objects ¢ € D\{p} it holds that

d(p.q) < d(p.0)

Definition 2: (k-distance neighborhood of a tuple).
Given a positive integer k, the k-distance neighborhood
of a tuple p is a set of k-nearest neighbors i.e., the data
points closer to p than k-distance(p) Neighi(p) = { q|
dis(q,p) < disy(p) and ¢ # p }. Which in Fig. 1 the
Neighy(p) is the points {ql, g2, ¢3, g4, O}. notice that
the number of points in the Neighy(p) may be larger
than K as shown in Fig. 1 this happens because dis(p,0)

=dis(p,q4)
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Definition 3: (reachability distance of a tuple o w.r.z.
p)- Given a positive integer &, the Rdis,(o,p) is either the
radius of the neighborhood of p if o in the
neighborhood of p or the real distance from o to p:

Rdisy(o,p) = max{disy(p),dis(o,p)}

As shown in Fig. 1 the Rdisi(q3,p) = disy(p) as
point ¢3 is in the neighborhood of p. on the other hand
the Rdisi(q5,p) = dis(q5,p) as point g5 is not in the
neighborhood of p.

Definition 4: (local reachability density of a tuple). For
a given parameter k, the local reachability density of a
tuple p is defined as:

Yoe Neighy (p) Rdisy(p, 0)
[Neighy (p)|

LRDg(p) = 1/

The LRD,(p) is the inverse of the average of the
reachability distances of p w.r.z. the tuples in Neigh;(p).

Definition 5: (local outlier factor of a tuple). Given an
integer k, the local outlier factor of a tuple p is:

LRD} (0)
LRDy (p)
|Neighy(p)I

Yoe Neighy (p)

LOFy(p) =

The local outlier factor of a tuple p is the average
of the ratio of the local reachability density of p and
those of p’s k-distance neighbors. As Breunig et al.
(2000) describes each tuple will be given a degree that
of being outlier using the LOF instead of mark each
tuple as an outlier or not. The higher the LOF mean that
this tuple is supposed to be more outlier than the tuples
with the lower LOF.

System flow: In this section, we will describe how we
will calculate the LOF in a distributed environment.
First, we will describe the components of the system
after that we will go into detail about how the system
calculates the LOF for each tuple.

We designed a distributed environment that
consists of one master node and slave nodes. The
master node is responsible for partitioning the dataset
and distribute it between slave nodes. Each slave node
will compute the LOF for its portion of the dataset and
sends the results back to the master node. There exist
many algorithms that make the master node processes
the results sent from the slaves to finish computing the
LOF like in Lozano and Acufia (2005). On the other
hands in our architecture, the master node is only
responsible for partitioning the dataset between slave
nodes and schedule the processing between them. And
all the LOF computations are done in the slave nodes.

We first split the dataset into subsets and assign
each subset to a slave node. To do so We propose a
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Fig. 2: System flow

border-based Gird Partition (BGP) algorithm which is
based on the GBP on Bai et al. (2016), this algorithm
partition the dataset into subsets and add a border to
each subset of the dataset. The tuples between this
border and the subset boarder are replicated in both
subsets. After that, each subset is allocated to a slave
node which calculates the LOF for this subset only.
Finally, each slave node sends its results back to the
master node. As shown in Fig. 2 the data set consists of
4 rows 2 orange and 2 blue rows, we divide the rows
between two slave nodes. 2 rows for first slave node
(orange) and the other 2 rows for the other slave node.
A border was added for each subset (orange and blue)
the border width is half of the row height. So, in Fig. 2
we will send the first slave node 2 orange rows and 0.5
blue row and the other slave node 2 blue rows and 0.5
orange row.

Border-based Gird Partition (BGP): The BGP is
based on the old GBP in Bai et al. (2016). In our BGP
algorithm, we continue from the step that determines
the number of grids. Then we divide the dataset into
isometric grids. Each grid has a border in its dimension
i. We propose a border. This border b is for each
dimension i in the dataset. The size of the border is a
percentage of the width of the grid in the dimension i
(ie/1,d]). After determining the border width, each grid
will now have a new virtual border in dimension i
which is its original border plus the proposed border
size. Each grid now will be allocated to a slave node.
As shown in Fig. 2 if the boarder is 25% of grid width.
So, when we divide the 4 rows into two slave nodes
there must be 2 grids. Each grid will be 2 row (gird in
orange and grid in blue). The border width is 25% of
the grid so each grid will take 25% of the other grid i.e.,
0.5 row. grid 1 will become 2 orange rows and 0.5 blue
row and grid 2 will be 2 blue rows and 0.5 orange row
as shown in algorithm 1. In algorithm 1 we first
calculate the new safe border for each grid, then we add
all the tuples between the original border and the new
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border to the grid (lines 1-8). After that we sort the
girds in g according to the number of tuples in g in
descending order, taking in consideration that the tuples
in g are not only the tuples below original border but
also the tuples between the new border and the original
border (line 9). Then we go through all the sorted girds
and allocate each grid g randomly to all the slave nodes
till all the slave nodes are allocated with grids. (lines
10-13).

For the remaining grids g, we calculate the average
number of tuples per slave node and initialize a set N’
that contains all the slave nodes with a number of tuples
less than or equal (lines 14-15). After that, we select the
slave node with the largest number of grids that are
adjacent to that grid g from N’ and allocate g to this
slave node (lines 16-17). We repeat this process (line
13-19) till all the girds are allocated to slave nodes.

After finish allocating the tuples in the grids to the
slave nodes using algorithm 1, Each slave node starts to
process its tuples and calculate the LOF for each tuple.
After each node finish calculating the LOF for the
tuples it sends the result back to the master node.

As shown in Fig. 3 we have a dataset with » tuples
and two slaves. The BGP algorithm will partition the
dataset into 4 isometric grids. Each slave node will be
allocated a number of grids for this example g7 will be
allocated to a slave node and g2, g3, g4 will be
allocated to the other slave node according to the
algorithm 1. Given the border percentage, for example,
we have two percentage one in the red color and the
other in the blue color. We have three choices one to
process the tuples without using any border. The second
one is to apply the red border and the last one is to
apply the blue border.

Algorithm 1: Border based Grid partition
input: Grid set G, dataset N, Boarder percentage b
output: Grids set allocated to slave nodes

1 foreach gird gin G do

2  for each dimension i in d do
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Fig. 3: BGP Example [N |=2,K=3

~NOo o1~ Ww

©

10
11
12

13
14
15

16

17

18
19

bw < the border width for dimension i
calculate new border for g in i
update g new border in i
end
add tuples between the original grid border and the
new border to g
end
sort grids in G according to the number of tuples
(tuples below safe border) in g in descending order
for each grid g in G do
if there exist slave node with no grid then
randomly choose a slave node with no grids and
allocate g to it

else
¢ €< the average number of tuples per salve node
initialize a slave node set N’ that contain all the
slave nodes that has number of tuples less than or
equal ¢
n € select the slave node with the largest number
of grids that are adjacent to g
allocate g to n
end
end

First, if we didn’t apply any border, then when we

calculate the disy(p1) it will be d3. As it is the distance
that can include at least 3 tuples (k = 3). If we apply our
border to be the red border then when we calculate the
disy(pl) it will be d4. As it is the distance that includes
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at least 3 tuples (k = 3). The distance changed after we
apply our border to be the red border as points p2, p3
were added to the neighbors of p/ and they are near to
pl than p4. So that the 42 is smaller than d3 as we
added extra tuples (p2,p3) from the red border. On the
other hand, for the point p6 if we apply the red border
the dis;(p6) will be d1 but if we increase our border and
apply the blue border the disy(p6) will be d2 as p7 is
now in the neighbors of p6 and it is near to p6 than p8.

Balanced Border-Based Gird Partition algorithm
(BBGP): In the BGP we notice that the portioning of
the dataset is done using the girds concept that the
author in Bai et al. (2016) proposed. One characteristic
of this grids is that they are isometric which mean that
all the girds must be with the same dimensions. In fact,
this characteristic may lead to unbalanced subsets in the
slave nodes. For example, if we have four grids and 2
slave nodes and the dataset is distributed to be most of
it in grid g/ and the other three grids are almost empty.
Then when we allocated our grids to the two slave
nodes one slave node will be allocated with g/ and the
other slave node will be allocated with the other three
empty grids. If we calculate the workload in the two
slaves we will found that the two slaves are not
balanced and one of them is underutilized which is
against  the characteristics of  the parallel
computing. As shown in Fig. 3 we notice that
most of the points are in grid g/. And the other three



Res. J. Appl. Sci. Eng. Technol.,

16(2): 77-87, 2019

p2
P3,

p7

* |d4 p5
;:H a3 -D4
L]
& Ll
L ]
%
] a
P di P ( J2

Fig. 4: Non-balanced grids old GBP

grids are almost empty. Grid g/ will be allocated to the
slave node and the other three grids will be allocated to
the other slave node. If we checked the load balancing
between them we will find the number of tuples
allocated to slave 1 to the other slave is 100:20.

Algorithm 2: Balanced border-based Gird Partition
algorithm (BBGP)

input: number of grids in each dimension NG, dataset
N, Border percentage b

output: Grids set allocated to slave nodes

1 for each dimension i in NG do

2 11, t2 <- the smallest and the largest tuple in
dimension i

pg <- the points ng in dimension i that divides the
space between t1, t2 such that all the spaces have
the same number of tuples, the last space may have
less tuples than the other spaces

g <-create a grid in dimension i with pg

addgto G

End

call Algorithm 1 with G, N, b

3

~No o1 b~

To solve this problem, we proposed the Balanced
boarder-based Gird Partition algorithm (BBGP) shown
in algorithm 2. In BBGP we first loop through all the
dimensions i in the number of grids in each dimension,
for example, we have 2 grids in x dimension and 2 grids
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in dimension y (lines 1-6). In each dimension i we
select the two tuples ¢1 and 2 that has the smallest and
most value in this dimension (line 2). Now we need to
divide the space between ¢ and ¢2 into n spaces that are
equal to the number of grids in this dimension. For
example, divide this space into two spaces. These
spaces must have the same number of tuples as possible
(line 3). We create a grid in the dimension i with the
spaces divided in line 3 then we add this grid to the grid
set G (line 4-5). At the end we call our algorithm 1 and
input to it the grid set G, data set N and the border
percentage b. after we apply algorithm 2 it will result
into dividing the dataset into a number of grids, these
grids have the same number of tuples. Then when
allocating these grids to the slave nodes each slave node
will have the same number of tuples to process which
will lead to balancing the load between all the slave
nodes. As shown in Fig. 4 this is the old GBP where the
grids are not balanced but in Fig. 5 the grids are
balanced.

RESULTS AND DISCUSSION

This section presents the experimental results of
the boarder-based Gird Partition (BGP) and Balanced
boarder-based Gird Partition algorithm (BBGP). In
addition a comparison between the proposed methods
and the GBP+DLC algorithm in Bai et al. (2016) are
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Fig. 5: Balanced grids new BBGP

presented. All the algorithms were implemented in
JAVA programming language and we use kryonet
(Esoteric, n.d., 2018) a java library that is used for TCP
and UDP client/server network communication. All the
algorithms were deployed in a cluster that consists of
one master node and two slave nodes. The master node
has a 2.5 GHz Intel Core i5 CPU, 8G memory DDR3
and 250G SSD hard disk. The other two slave nodes
one has 2.5 GHz Intel Core i7 CPU, 4G memory and
1T hard disk and the other slave has 2.5 GHz Intel Core
i5 CPU, 8G memory and 1T hard disk.

To evaluate the proposed algorithms three criterias
were considered:

e Time taken to calculate the LOF
Size of data that was transmitted over the network
Accuracy in calculating the right LOF for each
tuple

The calculation of LOF was done based on Breunig
et al. (2000). All the results were demonstrated using k&
= 5. Six boarder percentages of grid width were
demonstrated to evaluate the proposed algorithms
(0.001, 0.005, 0.01, 0.1, 0.2, 0.25).

Two real datasets Shuttle and Covtype (each
database is 10,000 tuple) were used to evaluate the
performance for all the algorithms. These datasets are
obtained from the Machine Learning database
repository at UCI (http://archive.ics.uci.edu/ml/)
(Dheeru and Karra Taniskidou, 2017).

45 Time for covtype data set

In Seconds

0.001 0.005 0.01 0.1 0.2
Grid percentage

EGBP+DLC =BGP mBBGP

Fig. 6: Processing time for GBP+DLC, BGP and BBGP for
covtype data set

Time taken to calculate the LOF: Figure 6 and 7
illustrates that for covtype dataset and shuttle dataset,
BGP algorithm takes much smaller time than that of
GBP+DLC algorithm in Bai er al. (2016). In addition,
BBGP algorithm takes a much smaller time than BGP
algorithm and GBP+DLC algorithm.

The GBP+DLC algorithm takes time in tuples
transmission for the cross-grid tuples over the network
but in BGP there is no tuples transmission over the
network. That’s why the BGP takes less time than the
GBP+DLC algorithm.

The BGP and GBP+DLC algorithm take more time
than the BBGP algorithm as when partitioning the
tuples across the girds (4 grids as mentioned in Fig. 4)
most of the tuples about 70% of them were distributed
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Time for shuttle data set

0.001 0.005 0.01 0.1 0.2 0.25
Grid percentage
EGBP+DLC ®BGP ®mBBGP

Fig. 7: Processing time for GBP+DLC, BGP and BBGP for
shuttle data set

1000000 | Data size over network size for covtype data set

900000
200000
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E 500000
Z 400000
300000
200000
100000

0

0.001 00035 0.01 0.1 0.2 0.25
Grid percentage
mGBP+DLC = BGP mBBGP

Fig. 8: Size of data over the network for GBP+DLC, BGP
and BBGP for CovType data set

in one grid which is processed by only one slave. While
slave A is processing the 70% of tuples, the other slave
B is processing only 30% of them. Slave B after
finishing processing the 30% of tuples it waits idle till
slave A finish it's processing which takes a lot of time
and don’t consume all the resources. On the other hand,
the BBGP algorithm takes less time as when portioning
the tuples each one of the four grids has almost the
same number of tuples. So, every slave has almost the
same number of tuples which utilize all the resources.

For the time and boarder percentage we notice that
when we increase the border the time for processing is
increased a little (or stable in comparing with the total
number of tuples to be processed) as there are extra
redundant tuples that will be processed.

Size of data that was transmitted over the network:
Figure 8 illustrates that, the data size transmitted over
the network for the covtype dataset for the GBP+DLC
algorithm is more than the size of the data for the BGP
and BBGP algorithms. But when we reach border
percentage of 0.2 the data size of the BBGP algorithm
is more than the BGP and GBP+DLC algorithm this is
because that number of redundant tuples increases
when increasing the border percentage.

For the shuttle dataset the data size transmitted
over the network is illustrated in Fig. 9. The size of the
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Fig. 9: Size of data over the network for GBP+DLC, BGP
and BBGP for shuttle data set

data transmitted over the network for BBGP algorithm
is always much bigger than the other two algorithms.
That’s because of the distribution of the tuples around
the boarders is high in compared to covType dataset.

We notice that the data size over the network for
our BBGP algorithm is larger than the data for
GBP+DLC. But the time for processing the data for the
BBGP is less than the time for the GBP+DLC
algorithm. This is due to that the GBP+DLC algorithm
takes time to calculate the k-distance neighbors and
sends a request to the slaves which has these neighbors.
Then the slaves send these tuples. After that, it takes
time to calculate the LOF for these tuples. This request
and response take time which is more than the
processing time for the LOF for each tuple. That’s why
the data size over the network is larger for the BBGP
algorithm but the time is smaller than the GBP+DLC
algorithm.

Accuracy in calculating the right LOF for each
tuple: In evaluating the accuracy of the algorithms, we
calculated the LOF for the tuples in both datasets
covtype and shuttle. The GBP+DLC algorithm
calculated the LOF for all the tuples correctly as any
tuple that is needed in the slave it will be sent to it from
the other slave so its accuracy is 100%.

For the BGP and BBGP algorithm, each slave node
sends a LOF value for each tuple it has. The tuples
replicated in both slaves have two values one from each
slave node. The master node has the choice to select the
LOF with the ssmallest value, biggest or average value
between the two slaves. For each tuples, we subtracts
the LOF of our algorithm and that of the original LOF
and found that for each border of the six borders (0.001,
0.005, 0.01, 0.1, 0.2, 0.25) the master can selects LOF
with the minimum, maximum or average value.

BGP algorithm: For the covtype dataset, if the master
selects the LOF with the minimum value, about 90.5-
91.5% of the tuples are equal to zero and about 98.5-
98.7% of the tuples are less than or equal to 0.1. If the
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Table 1: Accuracy of the algorithms for the two datasets

BGP
Min. Max. Avg
Data set Border =0 <0.1 =0 <0.1 =0 <0.1
Covtype 0.001 91.52 98.71 91.52 98.71 91.52 98.71
0.005 91.52 98.71 91.52 98.71 91.52 98.71
0.01 91.52 98.71 91.52 98.71 91.52 98.71
0.1 91.36 98.69 91.33 98.62 91.17 98.71
0.2 90.56 98.6 90.91 98.53 89.95 98.58
0.25 90.5 98.58 90.74 98.44 89.72 98.52
Shuttle 0.001 98.12 99.88 98.12 99.88 98.12 99.88
0.005 98.12 99.88 98.12 99.88 98.12 99.88
0.01 98.12 99.88 98.12 99.88 98.12 99.88
0.1 98.12 99.88 98.13 99.89 98.12 99.88
0.2 98.12 99.88 98.13 99.89 98.12 99.88
0.25 98.12 99.88 98.13 99.89 98.12 99.88
BBGP
Min Max Avg
Data set Border =0 <0.1 =0 <0.1 =0 <0.1
Covtype 0.001 88.25 98.48 88.25 98.47 88.25 98.47
0.005 88.26 98.49 88.26 98.47 88.26 98.47
0.01 88.25 98.49 88.25 98.46 86 98.31
0.1 87.1 98.41 87.14 98.13 86 98.31
0.2 87.01 98.45 87.03 98.16 85.79 98.28
0.25 86.98 98.36 87.29 98.27 86.02 98.32
Shuttle 0.001 76.81 92.39 76.4 92.14 75.43 92.24
0.005 77.36 92.53 77.16 92.41 76.65 92.42
0.01 77.24 92.54 77.12 92.44 76.56 92.47
0.1 77.42 92.55 77.32 92.52 76.92 92.53
0.2 77.43 92.55 77.31 92.52 77.05 92.53
0.25 77.49 92.55 77.34 92.52 77.05 92.53

Min.: Minimum; Max.: Maximum

master selects the LOF with the maximum value, about
90.7-91.5% of the tuples are equal to zero and about
98.4-98.7% of the tuples are less than or equal to 0.1. If
the master selects the LOF with the average value,
about 89.7-91.5% of the tuples are equal to zero and
about 98.5-98.7% of the tuples are less than or equal to
0.1.

For the shuttle dataset, if the master selects the
LOF with the minimum value, about 98.12% of the
tuples are equal to zero and about 99.88% of the tuples
are less than or equal to 0.1. If the master selects the
LOF with the maximum value, about 98.12% of the
tuples are equal to zero and about 99.88% of the tuples
are less than or equal to 0.1. If the master selects the
LOF with the average value, about 98.12% of the tuples
are equal to zero and about 99.88% of the tuples are
less than or equal to 0.1 as shown in Table 1.

BBGP algorithm: For the covtype dataset, if the
master selects the LOF with the minimum value, about
86.9-88.25% of the tuples are equal to zero and about
98.3-98.5% of the tuples are less than or equal to 0.1. If
the master selects the LOF with the maximum value,
about 87-88.25% of the tuples are equal to zero and
about 98.1-98.5% of the tuples are less than or equal to
0.1. If the master selects the LOF with the average
value, about 85.7-88.25% of the tuples are equal to zero
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and about 98.2-98.4% of the tuples are less than or
equal to 0.1

For the shuttle dataset if the master selects the LOF
with the minimum value, about 76.8-77.4% of the
tuples are equal to zero and about 92.5% of the tuples
are less than or equal to 0.1. If the master selects the
LOF with the maximum value, about 76.4-77.3% of the
tuples are equal to zero and about 92.1-92.5% of the
tuples are less than or equal to 0.1. If the master selects
the LOF with the average value, about 75.4-77% of the
tuples are equal to zero and about 92.2-92.5% of the
tuples are less than or equal to 0.1 as shown in Table 1.

This can be summarized in Fig. 10 and 11 for both
the datasets and the two algorithms (BGP and BBGP)
using the two comparison techniques mentioned above
(zero and below 0.1).

CONCLUSION

This study focuses on the problem of calculating
the outliers for big data sets in a distributed
environment processed. We discussed the existing
algorithms that calculate the outliers from the dataset
and mentioned the LOF to represent the degree of the
outlierness for each tuple in the data set. We also
discussed the existing algorithms for calculating the
LOF for large-scale data sets in a distributed



Res. J. Appl. Sci. Eng. Technol., 16(2): 77-87, 2019

100 ~
98 -
96 -
94 -
92
90 -
88
86
84 -
82 A
80

Covtype data set accuracy
mBGP
BBGP

0 <0.1

Comparison technique

Percentage of true LOF

Fig. 10: Percentage of true positive outliers detected for BGP
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Fig. 11: Percentage of true positive outliers detected for BGP
and BBGP algorithm for shuttle data set

environment and mentioned its weakness. Then we
propose two algorithms boarder-based Gird Partition
(BGP) and Balanced boarder-based Gird Partition
algorithm (BBGP). BGP uses a safe border to copy
tuples between grids to be processed with each grid and
discussed the impact of border size change on the
results. BBGP algorithm solves the problem of
unbalanced grids distributed between processing nodes.
Finally, we evaluate our algorithms by time, data size
over network and accuracy of the output over two real
data sets shuttle and covtype. The evaluation results
show that our two algorithms BGP and BBGP take less
time than GBP+DLC algorithm. And the accuracy of
our algorithms in calculating LOF is about 90-92% for
BGP and 87-88.3% for BBGP.
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