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Atefeh Hasan-Zadeh 
Fouman Faculty of Engineering, College of Engineering, University of Tehran, Iran,  
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Abstract: This study examines the well-known Thomas-Fermi equation as a Euler-Lagrange equation associated 
with the Fermi energy. The first integral of Thomas-Fermi equation and the behaviour of the solution near the saddle 
point of the equation has been determined. Then, drawing upon advanced ingredients of Sobolev spaces and weak 
solutions, an exact methodology is presented for the quantum correction near the origin of Thomas-Fermi equation. 
By this approach, the existence and uniqueness of the minimizer for the energy functional of the Thomas-Fermi 
equation have been proved. It has been demonstrated that by the definition of such a functional and the relevant 
Sobolev spaces, the Thomas-Fermi equation, particularly of a neutral atom, extends to the nonlinear Poisson 
equation. Accordingly, weak solutions for the more general Euler-Lagrange equation with more singularities are 
proposed. 
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INTRODUCTION 

 
Thomas-Fermi equation as a special case of 

nonlinear Poisson equations arises from a statistical 
model of many-electron atoms. Physical notions of 
Thomas-Fermi equation result to local Fermi 
momentum, Fermi sphere, Thomas-Fermi energy 
density and finally, Thomas-Fermi model applied to ions 
(Lieb and Simon, 1977; Lieb, 2000; Schwabl, 2007). 
This physical approach gives again the self-consistent 
Thomas-Fermi equation. In this manner, an energy 
functional extremization yield Thomas-Fermi equation 
can be derived. 

Near the origin, however, (Columb) potential is 
singular and the Thomas-Fermi energy is no longer 
reliable for the large nuclear charges and it is the main 
problem of this study. On the other hand, one special 
Euler-Lagrange equation as a minimizer of energy 
functional gives a nonlinear Poisson equation which is 
an extended version of Thomas-Fermi equation. This 
fact and in the sequel of applying the differential 
technique for the analytic solution to the Thomas-Fermi 
equation (Pearson and Richardson, 1983; Liao, 2003; 
Fatoorehchi and Abolghasemi, 2014; Hasan-Zadeh and 
Fatootehchi, 2017) encourage to refer the analytic 
approach.  

Many of solutions of this equation consist of the 
approximate or numerical solutions of it (Parker, 1988; 
Zaitsev et al., 2004; Turkyilmazoglu, 2012) for example 
refer to Baaquie (1997), Bahuguna et al. (2002) and 
Fatoorehchi and Abolghasemi (2014). This problem for 
natural atoms has been examined by integral curves of 

an infinitesimal version of the corresponding differential 
equation (Baaquie, 1997; Lieb, 2000; Hagen, 2009) 
which we collect all of them in Theorem 1. In effect, 
some results about the procedure have been defined as 
the integration of the problem. 

For quantum correction near the origin of Thomas-
Fermi equation, in Theorem 2, the minimizer of the 
energy functional will be found by some notions of 
Sobolev spaces. Also, this minimizer is a solution of a 
boundary-value problem for the Euler–Lagrange 
equation associated with the Fermi energy functional 
which satisfies in the condition for the existence of the 
solution in the weak sense.  

This approach is a motivation for the definition of 
weak solution which can be applied to the general Euler-
Lagrange equation with more singularities, sometimes 
awkward. Also, the structure of the proof of the 
Theorem 2 can be extended to the Euclidean space ℝ" 
and then Euler-Lagrange partial differential equation for 
no smooth functions with the singularities on the sets 
with the nonzero measure. 
 

APPROXIMATE EXAMINATION OF  
THOMAS-FERMI EQUATION 

 
This study was conducted in Fouman Faculty of 

Engineering, College of Engineering, University of 
Tehran, Iran. 
 
Preliminaries of thomas-fermi equation: As 
mentioned in the works of Pearson and Richardson 
(1983) and Schwabl (2007) the Thomas-Fermi equation  
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is a spherically symmetric version of the Poisson 
equation for the electric potential #$

%
 outside the nucleus 

of a many-electron atom: 
 

∇𝑉( = −4𝜋𝑒.𝜌	                (1) 
 
here 𝑉( = 𝑉 − 𝜉, −#

%
 is potential, 𝜉 is the energy of the 

most energetic electrons, 𝑒 is electronic charge and −𝑒𝜌 
is  charge  density.  By  statistical  considerations,  the  
Eq. (1) becomes a nonlinear ordinary differential 
equation: 
 

(
2
34

324
(𝑟𝑉() = − 8%4

9:ℏ<
(−2𝑚𝑉()

<
4	              (2) 

 
The solution of (2) is sought for 𝑟 > 0, but as 𝑟 →

0, the potential of the concentrated source (nucleus) at 
the origin is 𝑍 → −C%4

2
, where 𝑍 is the atomic number. 

For neutral free atoms, a boundary condition at infinitely 
is also defined. The surface of the atom corresponds to 
𝑟 → ∞ where 𝜌 → 0 (𝜉 = 0). No net charge demands; 
𝑟𝑉( → 0 as 𝑟 → ∞. Thus, for neutral atoms the problem 
is: 
 

34E
3F4

= E
<
4

√F
, 0 < 𝑥 < ∞	                                            (3) 

 
𝑦	(0) = 1	                                                              (4) 
 
𝑦	(∞) = 0	                                                             (5) 

 
Of Eq. (3) the differential equation for the infinitesimal 
difference 𝛿𝑦 = 𝑢 is: 
 

�̈� = 9
.
𝑥P

$
4𝑦

$
4𝑢	                                                        (6) 

 
where, 𝑢(∞) = 0. We can show that if 𝑢	(0) > 0, then 
𝑢	(𝑥) ≥ 0 for all 𝑥. 
 
The infinitesimal version of thomas-fermi equation: 
All of the collection from the numerical approaches of 
Thomas-Fermi equation (Parker, 1988; Baaquie, 1997; 
Lieb, 2000; Zaitsev et al., 2004; Hagen, 2009; 
Turkyilmazoglu, 2012) it can be expressed the following 
result.  
 
Theorem 1: The first integral of Thomas-Fermi Eq. (3) 
with boundary conditions (4) and (5), also the path 
which satisfies the boundary condition (5) and the 
behaviour of the solution near the saddle point of the 
equation can be determined. In effect, it can be given an 
algorithm which defines the integration of the problem 
(3) with boundary conditions (4) and (5). 

 
 
Fig. 1: First integrals of thomas-fermi equation 
 
Proof: The Eq. (3) scales under stretching 

transformations as E
F
~ E

<
4

F
$
4
, the group is 𝑦( = 𝑎9𝑦, 𝑥( =

F
T
. The corresponding invariant coordinates are 𝑢 = 𝑥9𝑦, 

𝑣 = 𝑥8𝑦′. Then 3W
3F
= 𝑥9𝑦X + 3𝑥.𝑦 = [\9W

F
, 3[

3F
=

𝑥8𝑦′′ + 4𝑥9𝑦′ = 8[\W
<
4

F
. The first order equation to be 

studied is: 
 

3[
3W
= 8[\W

<
4

[\9W
	                                                          (7) 

 
And the mapping to 𝑥 along an integral curve of (7) is: 
 

3F
F
= 3W

[\9W
= 3[

8[\W
<
4
	                                                (8) 

 
The general solution of the first order differential 

Eq. (6) is a one-parameter family of curves 𝜑(𝑢, 𝑣) = 𝛾. 
Only one curve of this family corresponds to the family 
𝑦	(𝑥) of positive solutions of the Thomas-Fermi Eq. (6) 
for which 𝑦	(∞) = 0; for any one of these curves 𝑦	(𝑥) 
is uniquely determined by its value 𝑦	(0) at 𝑥 = 0. For 
the desired curve in the (𝑢, 𝑣) -plane, it can be 
concentrated on the fourth quadrant, shown in Fig. 1. 
The isoclines of zero slope 4𝑣 + 𝑢

<
4 = 0 are drawn as 

well as some representative paths. There is one singular 

point 𝑝 of interest where 4𝑣` + 𝑢`
<
4 = 0, 4𝑣` + 3𝑢` = 0, 

or 𝑢` = 144 and 𝑣` = −432. The locus of zero slope 

𝛾a is the curve 4𝑣 + 𝑢
<
4 = 0 and the locus of infinite 

slope 𝛾b is the line 3𝑢 + 𝑣 = 0 (the transverse line in 
Fig. 1).  

The intersections of these loci are the singular 
points of the differential equation. They are a node at the 
origin O and a saddle point at 𝑝	(144,−432). In the 
lenticular region between these two loci, the slope 3[

3W
<

0; to either side of this region 3[
3W
> 0. As usual, the 

singular point represents one exceptional solution 𝑦d of 
(3), 𝑦d =

(88
F<

.  
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Fig. 2: An algorithm of integration of thomas-fermi problem  
 

The behaviour near the origin can be obtained from 
the local form of (7). Many paths run into the origin 
between the isoclines and (it turns out) that on these 
paths ≫ 𝑣 ≫ 𝑢

<
4, so that (7) is approximated by 3[

3W
=

8[
9W
+⋯, thus, near the origin, on all these paths: 

 
𝑣 = 𝑐a𝑢

h
< +⋯	                (9) 

 
where, 𝑐a to be determined. Integrating of the mapping 
formula (8), 3F

F
= 3W

9W
 result in 𝑢 = 𝑎a𝑥9 + ⋯ = 𝑦𝑥9. 

Thus, the origin of (𝑢, 𝑣) corresponds to 𝑥 = 0 and the 
boundary condition (4) determines the constant of 
integration in the mapping back to 𝑥, namely 𝑎a = 1. 
The only path which has a chance to satisfy the 
boundary condition at infinity is the exceptional path 
running from the origin to the saddle point at 𝑝. For the 
study of the behaviour as the solution approaches the 
saddle point along this path, let 𝑢 = 𝑢` + 𝑢∗, 𝑣 = 𝑣` +

𝑣∗. So of (9), 3[
∗

3W∗
=

8[∗\<4Wj
$
4W∗

[∗\9W∗
, 𝑢`

$
4 = 12.  

The singular point is a saddle point and the 
exceptional paths can be found by letting 𝑣∗ = 𝑘𝑢∗. 

Then 𝑘 = 8l\(m
l\9

. The roots are 𝑘(,. =
(
.
± o(

8
+ 18. Let 

−𝑘. = 𝜆 = 3.76. Thus, along the exceptional path 

running from the origin to the singular point 𝑝, 𝑣∗ =
−𝜆𝑢∗ and the mapping formula (8) shows that 3F

F
=

− 3W∗

(uP9)W∗
. Integration loads to: 

 

𝑥 = 𝑎b(𝑢∗)
$

(vw<)	              (10) 
 
so that, in fact, 𝑥 → ∞ as 𝑢∗ → 0. The constant 𝑎b in 
the mapping formula is not arbitrary but has already 
been found from the considerations near the origin. The 
form of corrections to (9) is found from (10), 𝑦 →
(
F<
x144 + yTz

F
{
uP9

+⋯ |. 
The final algorithm for a definition of integration of 

the problem (3) with boundary conditions (4) and (5) 
has been depicted in Fig. 2. 
 

PHYSICAL NOTIONS OF THOMAS-FERMI 
EQUATION 

 
As the notations of the works of Liao or Hagen 

(Liao, 2003; Hagen, 2009), if an atom has a large 
nuclear charge 𝑍, most of the electrons move in orbits 
with large quantum numbers.  

Filling up all negative energy states with electrons 
of both spin directions produces some local particle 
density 𝑛	(𝑥) calculated from the classical local density 

𝜌��(𝐸; 𝑥) =
���j�(d;F⃗)

�4(d;F⃗)(.:ℏ)�
= .�{.�[dP#(F⃗)]}

�
4w$

(8:ℏ4)
�
4�y�4{

 over all 

negative energies, yielding the Thomas-Fermi density of 
states: 

 

𝜌��
(P)(𝑥) = ∫ 𝜌��

a
#(F⃗) (𝐸; 𝑥)𝑑𝐸 = y �

.:ℏ4
{
�
4 [P#(F⃗)]

�
4

�y�4\({
	     (11) 

 
At each point 𝑥, the electrons occupy all levels up 

to a Fermi energy 𝐸� =
`�(F)4

.�
+ 𝑉(𝑥). The associated 

local Fermi momentum is equal to the local momentum 
function 𝜌(𝐸; 𝑥) = �2𝑀[𝐸 − 𝑉(𝑥)] at 𝐸 = 𝐸�; 
𝑝(𝐸; 𝑥) = �2𝑀[𝐸� − 𝑉(𝑥)].  

For neutral atoms, the Fermi energy is zero and the 
density (11) will be recovered. By occupying each state 
of negative energy twice, the classical electron density 
is: 
 

𝑛(𝑥) = 2𝜌��
(P)(𝑥)	              (12) 

 
The potential energy density associated with the 

levels of negative energy is: 
  

𝐸`����
(P) (𝑥) = 𝑉(𝑥)𝜌(P)(𝑥) =

−y �
.:ℏ4

{
�
4 (

�y�4\({
[−𝑉(𝑥)]

�
4\(	                           (13) 

Determining all the paths in the 𝑢, 𝑣 -
plane which also represent solutions of the 

Thomas-Fermi equation.

Converting the original two-point boundary value 
problem to an initial value problem.

Determining the trajectory 𝑣 𝑢 .
Choosing point 144 − 𝜏, −432 − 𝜏 as the starting 

point.
Integrating numerically in the direction curves 

entering the origin.

Starting at the saddle point	 𝑢`, 𝑣` .
Integrating the paths along the exceptional path toward 

the origin.
Determining the trajectory. 
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To find the kinetic energy density should be 
integrated: 
 

𝐸l�"��
(P) (𝑥) = ∫ [𝐸 − 𝑉(𝑥)]𝜌��

a
#(F⃗) (𝐸; 𝑥)𝑑𝐸 =

�
4

�
4\(

y �
.:ℏ4

{
�
4 (

�y�4\({
[−𝑉(𝑥)]

�
4\(	                         (14) 

 
The sum of the two is the Thomas-Fermi energy 

density 𝐸��
(P)(𝑥) = ∫ 𝐸𝜌��

a
#(F⃗) (𝐸; 𝑥)𝑑𝐸 = −

y �
4�ℏ4

{
�
4

y�4\({�y
�
4\({

. 

The total electrostatic potential energy 𝑉(𝑥) caused by 
the combined charges of the nucleus and the electron 
cloud is found by solving the Poisson equation: 
  

 (15)                           
 

It is convenient to describe the screening effect of 
the electron cloud upon the Coulomb potential (14) by a 
multiplicative dimensionless function f	(x�⃗ ). Restricting 
our attention to the ground state, which is rotationally 
symmetric, the solution of the Poisson Eq. (15) can be 
written as 𝑉(𝑥) = −C%4�(2)

2
. At the origin, the function 

𝑓(𝑟) is normalized to unity: 
 

𝑓(0) = 1	                                                             (16) 
 

To make sure that the nuclear is not changed by the 
electrons, where has been obtained in Eq. (12) with 
boundary conditions (13) and (14).  

All length scales of the electrons will now be 
specified in units of 𝑎�� , i.e., 𝑟 = 𝑎��𝜉. In these units, 
the electron density (13) becomes simply 𝑛(𝑥) =

− �.C%4��
<
4

9:4ℏ<
y �( )
T¡� 

{
<
4 = C

8:T¡�
< y�( )

 
{
<
4. The left-hand side 

of the Poisson Eq. (15) reads Δ𝑉(𝑥) = (
2
34

324
𝑉(𝑥) =

− C%4

T¡�£
< 𝑓′′(𝜉).  

So that will be obtained the self-consistent Thomas-
Fermi equation: 
 

𝑓XX(𝜉) = (
� 
𝑓
<
4(𝜉), 𝜉 > 0	             (17) 

 
The condition 𝜉 > 0 excludes the nuclear charge 

from the equation, whose correct size is incorporated by 
the initial condition (16). Near the origin, the Eq. (17) 
starts out like 𝑓(𝜉) = 1 − 𝑠𝜉 + ⋯, with a slope 
𝑠~1.58807. For large, it goes to zero like 𝑓(𝜉)~(88

 <
. 

This power falls off is a weakness of the model 
since the true screened potential should fall off 
exponentially fast. The right-hand side by itself happens 
to be an exact solution of (17) but does not satisfy the 
desired boundary condition (16).  

It can be derived as an energy functional whose 
functional extremization yields the Thomas-Fermi Eq. 
(17), (Baaquie, 1997; Lieb, 2000; Schwabl, 2007; 
Hagen, 2009).  
 

IMPROVEMENTS IN THE QUANTUM  
EFFECTS NEAR THE SINGULARITY 

 
Statement of the problem: The Thomas-Fermi energy 
with exchanges corrections which obtained in above 
Section would be reliable for large Z only if the 
potential was smooth so that the semiclassical 
approximation is applicable.  

Near the origin, however, the Coulomb potential is 
singular and this condition is no longer satisfied. Some 
more calculational efforts are necessary to account for 
the quantum effects near the singularity, based on the 
other observation (Baaquie, 1997). This problem can be 
solved in Theorem 1 by analytic ingredients, especially 
weak solutions.  
 

METHODOLOGY 
 
Weak solution: For approximate approaches, the Fermi 
energy and the Poisson Eq. (15) which result in the 
Thomas-Fermi Eq. (17) will be reviewed in the notions 
of functional analysis. For the quantum correction near 
the origin, in general, suppose 𝑈 ⊆ (0,∞) is a bounded, 
open interval and 𝐿:	ℝ × ℝ × 𝑈¬ → ℝ; 𝐿 = 𝐿(𝑝, 𝑧, 𝑥) is 
a smooth Lagrangian. Also, it should be assumed that 
the function 𝐼[. ] have the explicit form: 
 

𝐼[𝜔] ≔ ∫ 𝐿(𝐷𝜔(𝑥), 𝜔(𝑥), 𝑥)² 𝑑𝑥            (18) 
 
for smooth functions 𝜔:𝑈¬ → ℝ satisfying the boundary 
condition 𝜔 = 𝑔 on 𝜕𝑈. Also, suppose some particular 
smooth function 𝑢, satisfying the requisite boundary 
condition 𝑢 = 𝑔 on 𝜕𝑈, happens to be a minimizer of 
𝐼[. ].  

In this way, the nonlinear ODE, i.e., the Euler-
Lagrange equation associated with the energy functional 
𝐼[. ] defined by (18) can be solved by 𝑢: 
 

−y𝐿`(𝐷𝑢, 𝑢, 𝑥){
F
+ 𝐿µ(𝐷𝑢, 𝑢, 𝑥) = 0	            (19) 

 
So, on the contrary, it can be tried to find a solution 

of (19) by searching for minimizers of (18). 
Let the Sobolev space 𝑊l,`(𝑈) consists of all weak 

derivations of the locally summable functions 𝑢:𝑈 → ℝ 
such that for each multi-index 𝛼 with |𝛼| ≤ 𝑘 and for all 
test functions 𝐶�b(𝑈), ∫ 𝑢² 𝐷»𝜑𝑑𝑥 =
(−1)|»| ∫ 𝑣² 𝜑𝑑𝑥	which the weak derivation belongs to 
𝐿`(𝑈). Suppose the closure of 𝐶�b(𝑈) in 𝑊l,`(𝑈)  is 
denoted by 𝑊a

l,`(𝑈) (Bahuguna et al., 2002; Maz’ya, 
2008). 
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Theorem 2: Singularity near the origin of Thomas-
Fermi equation (and then singularity of the Coulomb 
potential) as a Euler-Lagrange equation associated with 
the Fermi energy can be improved in the sense of 
nonsmooth potential. 
 
Proof: In fact, it will be shown that the weak solution of 
the Lagrangian which is a minimizer of the Euler-
Lagrange equation is the key to this enigma. 

As the notions of above, let 𝑓:ℝ → ℝ be a smooth 
function and 𝐹(𝑧) = ∫ 𝑓(𝑦)µ

a 𝑑𝑦 is its antiderivative. 
Then the Euler-Lagrange equation associated with the 
functional 𝐼[𝜔] ≔ ∫

|½¾|4

.
− 𝐹(𝜔)² 𝑑𝑥 is the nonlinear 

Poisson equation Δ𝑢 = 𝑓(𝑢) in 𝑈, which Thomas-Fermi 
equation is a special case of it and studied this equation 
in above Section.  

Now, focus on Lagrangian 𝐿 which can be exposed 
to some awkward singularities other than ones of 
Thomas-Fermi energy.  

Fix any 𝑣 ∈ 𝑊a
(,À(𝑈) and set 𝑖(𝜏) = 𝐼[𝑢 + 𝜏𝑣], 𝜏 ∈

ℝ. It can be checked that the Lagrangian 𝐿 verifies the 
growth conditions: 
 

|𝐿(𝑝, 𝑧, 𝑥)| ≤ 𝐶(|𝑝|À + |𝑧|À + 1),
Â𝐷`𝐿(𝑝, 𝑧, 𝑥)Â ≤ 𝐶(|𝑝|ÀP( + |𝑧|ÀP( + 1),
|𝐷µ𝐿(𝑝, 𝑧, 𝑥)| ≤ 𝐶(|𝑝|ÀP( + |𝑧|ÀP( + 1)

	         (20) 

 
For some constant 𝐶, 1 < 𝑞 < ∞ and all 𝑝, 𝑧 ∈ ℝ 

and 𝑥 ∈ 𝑈. In view of (20), it can be seen that 𝑖(𝜏) is 
finite for all 𝜏. Let 𝜏 ≠ 0 and write the difference 
quotient: 

 
�(Å)P�(a)

Å
= ∫ Æ(½W\Å[,W\Å[,F)PÆ(½W,W,F)

Å
𝑑𝑥 =²

∫ 𝐿Å² (𝑥)𝑑𝑥	                                                        (21) 
 
𝐿Å(𝑥) ≔ (

Å
[𝐿(𝐷𝑢(𝑥) + 𝜏𝑣(𝑥), 𝑢(𝑥) + 𝜏𝑣(𝑥), 𝑥) −

𝐿	(𝐷𝑢	(𝑥), 𝑢	(𝑥), 𝑥)] for almost everywhere 𝑥 ∈ 𝑈. 
Clearly: 
 
𝐿Å(𝑥) → 𝐿`�𝐷W,W,F�𝑣F + 𝐿µ(𝐷𝑢, 𝑢, 𝑥)𝑣, 𝜏 → 0, 𝑎. 𝑒

𝐿Å(𝑥) ≔ (
Å
× ∫ 𝐿`(𝐷𝑢 + 𝑠𝐷𝑣, 𝑢 + 𝑠𝑣, 𝑥)𝑣F

Å
a

+𝐿µ(𝐷𝑢 + 𝑠𝐷𝑣, 𝑢 + 𝑠𝑣, 𝑥)𝑣𝑑𝑠
  (22) 

 
Then since 𝑢, 𝑣 ∈ 𝑊(,À(𝑈), inequality (11) and 

Yong inequality imply after some elementary 
calculations that for each 𝜏 ≠ 0,|𝐿Å(𝑥)| ≤ 𝐶(|𝐷𝑢|À +
|𝑢|À + |𝐷𝑣|À + |𝑣|À + 1) ∈ 𝐿((𝑈).  

Consequently, it can be invoked the Dominated 
Convergence Theorem to conclude from (21) and (22) 
that 𝑖′(0) exists and equals ∫ 𝐿`(𝐷𝑢, 𝑢, 𝑣)𝑣F +²
𝐿µ (𝐷𝑢, 𝑢, 𝑣)𝑣𝑑𝑥.  

But then since 𝑖(. ) has a minimum for 𝜏 = 0, 
𝑖X(0) = 0; and 𝑢 ∈ 𝑇 = {𝜔 ∈ 𝑊(,À(𝑈)|𝜔 =
𝑔	𝑜𝑛	𝜕𝑈	𝑖𝑛	𝑡ℎ𝑒	𝑡𝑟𝑎𝑐𝑒	𝑠𝑒𝑛𝑠𝑒} is a solution of the 
boundary-value problem: 

Ë−y𝐿`
(𝐷𝑢, 𝑢, 𝑥){

F
+ 𝐿µ(𝐷𝑢, 𝑢, 𝑥), 𝑖𝑛	𝑈

𝑢 = 𝑔, 𝑜𝑛	𝜕𝑈
	          (23) 

 
For the Euler-Lagrange equation means is the weak 

solution. Also the mapping (𝑝, 𝑧) → 𝐿(𝑝, 𝑧, 𝑥) is 
convex. Then 𝐼[𝑢] + ∫ 𝐷½W(𝐷𝑢(𝑥), 𝑢(𝑥), 𝑥)² . (𝐷𝑤 −
𝐷𝑢) + 𝐷W𝐿(𝐷𝑢(𝑥), 𝑢(𝑥), 𝑥). �𝑤(𝑥) − 𝑢(𝑥)�𝑑𝑥 ≤
𝐼[𝜔], for the weak solution 𝑢 and any 𝜔 ∈ 𝑇.  

In view of (23) the second term on the right is zero 
and therefore 𝐼[𝑢] ≤ 𝐼[𝜔] for each 𝜔 ∈ 𝜏. Then this 
solution is unique, too. 
 

CONCLUSION 
 

In this study, the first integral of Thomas-Fermi 
equation and the behaviour of the solution near the 
saddle point of the equation was determined which 
result to an algorithm for the numerical procedure. 
Also, a novel method for the quantum correction near 
the origin presented. This consists of finding the (weak) 
solution of the Lagrangian associated with Thomas-
Fermi equation which has the singularities, especially in 
the origin. Also, since the Lagrangian mapping 
corresponded to the Thomas-Fermi equation is convex 
then each weak solution is, in fact, a minimizer. 

The main advantage of the proposed method is to 
offer a general solution to the problem that can be 
applied to the nonlinear Poisson equation. The proposed 
approach for Euler-Lagrange equations corresponding 
to multivariate functions can be used with a large set of 
singularities of that functions.  
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