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Abstract: In this study, we report the study of the surface morphology, the structural and optical proprieties of 
transparent cadmium doped tin dioxide (Cd:SnO2) thin films deposited on glass and Si(100) substrates by Sol Gel 
Dip Coating (SGDC) technique. The analysis was carried out using Grazing Incidence X-Ray Diffraction (GIXRD), 
Atomic Force Microscopy (AFM), UV-Vis spectrophotometry and Spectroscopic Ellipsometry (SE). The X-ray 
diffraction reveals that all films deposited on Si(100) substrate have tetragonal crystalline structure with preferential 
orientation along (310) plane, but an amorphous structure is obtained for all the films prepared on glass substrate. 
The surface roughness, observed by means of AFM varies from 19 to 4 nm. The optical measurements show that the 
deposited Cd:SnO2 films have a high transparency (~86%) in the visible spectrum and a band gap energy decreasing 
from 3.60 eV to 3.31 eV with increasing Cd concentration. The obtained values of the refractive index of the films 
are ranging between 1.559 and 1.613. 
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INTRODUCTION 

 
Transparent Conducting Oxide (TCO) materials 

have a greater importance due to the large variety of 
their applications such as electrochromic devices (Kuo 
et al., 2012), solar cells (Kim et al., 2010), 
optoelectronics devices (Ramamoorthy et al., 2006). 
Tin dioxide (SnO2) is one of the most important (TCO) 
because of his numerous applications in modern 
technologies, such as flat panel displays, solar cells, 
light emitting diodes and gas sensors (Ginley and 
Bright, 2000; Young et al., 2003; McDowell et al., 
2008; Thangaraju, 2002). Indeed, SnO2 which is non 
toxic and abundant material in nature, is particularly 
characterized by a wide band gap (Eg = 3.6 eV), a high 
electrical conductivity, a high transmittance in the 
ultraviolet–visible region and a high infrared (IR) 
reflectance (Ginley and Bright, 2000; Minami, 2000). 
Additive elements such as Cu (Vasiliev et al., 1998; 
Shuping  et  al.,  2008; Patil and Patil, 2006; Yamazoe 
et al., 1996; Jin et al., 2006), Pd (Shimizu et al., 1998; 
Shen et al., 2009; Manjula et al., 2009; Pavelko et al., 
2009; Cioffi et al., 2006), In Durrani et al. (2005) and 
Shukla et al. (2007) and rare earth elements (Samotaev 

et al., 2007) are used to improve the sensor response, 
selectivity and also surface modification. Chemical 
vapor deposition, sol-gel, sputtering, spray pyrolysis, 
pulse laser deposition are the main deposition 
techniques used to synthesize SnO2 films onto 
substrates (Fang and Chang, 2005; Bagheri-
Mohagheghi and Shokooh-Saremi, 2004; Chen et al., 
2004; Chen et al., 2003; Chen et al., 2005; Chen et al., 
2006). 

The aim of this study is to study the structural and 
optical properties of cadmium doped SnO2 films 
deposited by SGDC technique onto silicon and glass 
substrates with different Cd doping concentrations. The 
effect of Cd doping on the physical properties of the 
fabricated SnO2 thin films is elucidate.  
 

MATERIALS AND METHODS 

 

Undoped and Cd doped SnO2 thin films were 
prepared by sol–gel dip-coating process using SnCl2-
2H2O and CdCl2-5H2O as precursors. The starting sols 
of undoped and Cd doped SnO2 with two different 
molar concentrations (6 and 10 at. % Cd) were prepared 
by a simple procedure. A mixture of CdCl2-5H2O and 
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Fig. 1: Grazing incidence X-ray diffraction patterns of thin Cd: SnO2 films deposited on glass (A) and Si (100) (B) substrates 
 
SnCl2-2H2O chemicals was dissolved in 20 ml of 
ethanol. After refluxing at 60°C during 2 hours under 
magnetic stirring, homogeneous mixtures of precursors 
were formed. Then, aging for two days at room 
temperature, the transparent sols were obtained. 
Subsequently, the sols were dip-coated on the glass and 
Si(100) cleaned substrates and then dried at 100°C for 
15 min for the formation of the initial thin film. 
Different layers were obtained after repeating the 
operation several times. Finally, the samples were 
annealed in air at 550°C for 2 h.  

The structural properties of the deposited films 
were studied by means of Grazing Incidence X-Ray 
Diffraction (GIXRD) using CuKα radiation (λ = 
1.54056 Å) from Bruker-AXS.D8 diffractometer. The 
surface morphology was observed using a Pacific 
Nanotechnology atomic force microscope. The 
Spectroscopic Ellipsometry (SE) measurements were 
performed on a Horiba-Jobin-Yvon Ellipsometer 
UVISEL operating in the wavelength range 260-800 
nm. The optical transmittance was recorded on a 
Shimadzu 3101 PC UV-visible spectrophotometer. 
 

RESULTS AND DISCUSSION 

 

The X-ray diffraction patterns of the undoped and 
Cd doped SnO2 thin films deposited on glass and Si 
(100) substrates are shown in the Fig. 1A and 1B 
respectively.  

As can be seen from the Fig. 1A, the X-ray 
diffraction spectra recorded in thin SnO2 films 
deposited on a glass substrate do not contain any peaks, 
indicating that the films are amorphous. However, the 
X-ray analysis shows that SnO2 films deposited on a 
monocrystalline silicon are polycrystalline with 
tetragonal  structure  (Fig. 1B). The  most  intense  peak  

 
 

Fig. 2: X-ray diffraction (310) line of thin Cd:SnO2 films 
deposited on Si 

 
observed corresponds to the (310) line and weak 
additional (101), (301), (041), (212) and (223) lines are 
registered. It is easy to notice that the most important 
(310) line becomes more sharp and more intense with 
the increasing of Cd concentration from 6 to 10 at.%. It 
means that the high Cd doping leads to the formation of 
well-crystallized SnO2 films. The peaks obtained 
experimentally are identified and compared with 
standard values of Joint Committee on the Powder 
Diffraction Spectra data (JCPDS No. 88-0287).  

In Fig. 2, also the (310) peak position undergoes a 
shift which is due to mechanical strains created by the 
incorporation of a high Cd concentration in the SnO2 

lattice. 
The optical transmittance spectra of pure and Cd 

doped SnO2 thin films are recorded in the range 300–
800 nm and plotted in the Fig. 3. 

Figure 3 shows that the optical transmittance of all 
the studied samples is more than 80% in the spectral 
UV-Vis  region  and  their absorption band is entirely in 
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Fig. 3: Transmission spectra of undoped and Cd doped SnO2 
thin films deposited on glass  

 

 
 
Fig. 4: Typical variation of (αhν)2 as a function of photon 

energy of undoped and Cd doped SnO2 thin films 
deposited on glass 

 
 

Fig. 5: AFM images of undoped and Cd doped SnO2 thin films deposited on glass 
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Fig. 6: (A) Dispersion of the refractive index for pure and Cd doped SnO2 films, derived from SE measurements and (B) 
refractive index vs Cd concentration 

 
the UV light region of 300-350 nm. The observed 
transmission values are compared with earlier reported 
values (Mariappan et al., 2013). A slight shift of the 
absorption edge toward higher wavelength region is 
found with increasing Cd concentration. The higher-
energy electronic transitions from valence to 
conduction bands confirm the direct type 
semiconducting nature of the material (Pejova and 
Grozdanov, 2007). The Eg band gap of the deposited 
films is calculated by using the following Tauc formula 
(Tauc, 1974): 
 

(αhν) = A(hν-Eg)
m                              (1) 

 
where, 
ν  : The frequency  
A : A constant  
m : Assumes values 1/2, 2, 3/2  and 3 depending on 

the mode of interband transition, i.e., direct, 
allowed indirect, direct forbidden and indirect 
forbidden transition, respectively.  

 
Typical plots of (αhν)2 versus hν for pure and Cd 

doped SnO2 films are shown in Fig. 4. The 
extrapolation of the linear portion of the (αhν)2 curves 
to the hν energy axis gives the value of the energy gap 
for pure and Cd doped SnO2 films. As can be seen, the 
optical band gap decreases from 3.60 eV for the 
undoped SnO2 films to 3.31 eV for 10 at. % Cd doped 
SnO2 films. The deduced 3.60 eV value is in agreement 
with the band gap energy of pure SnO2 (Bhat et al., 
2007). The reduction in the band gap energy may be 
due to the decrease of holes concentration with the 
increase of Cd doping (Mariappan et al., 2013).  

Figure 5 shows AFM images of the undoped and 
Cd-doped SnO2 thin films for different atomic Cd 
contents. By analyzing the AFM images, the roughness 
of the films is estimated through the root mean square 
(RMS) parameter. The Cd doping leads to a significant 
decrease in RMS values from 19.2 nm for SnO2 to 4.3 

nm for 6 at. % Cd:SnO2. For the 10 at. % Cd:SnO2 
sample, the RMS is intermediate. 

AFM images indicate the formation of 
polycrystalline thin films with uniform and smooth 
surface. Moreover, it is evident that lower surface 
roughness with more compact surface is achieved by 
addition of 6 Cd at.% doping. However, more compact 
surface significantly decreases the RMS factor of the 
films, which leads to TCO with higher transparency. It 
seems that the latter factor plays a key role in 
improving of properties of TCO films. As a result, the 
combination of more compact and homogenous surface 
with less RMS roughness provides new TCO with 
better properties compared to TCO films for devices 
applications. 

The knowledge of optical constants of the thin 
films is very significant since they can determine the 
exact application of the films. Figure 6A shows the 
dispersion of the refractive index for pure and Cd doped 
SnO2 thin films, derived from SE measurements. 

It is clear from the Fig. 6A that the spectral 
behavior of refractive index for the pure and Cd doped 
films is almost similar and it is decreasing with 
wavelength. The refractive index is 1.559 for undoped 
SnO2 films and this value increases to 1.600 and  1.613 
for 10 at. % and 6at. % Cd doping respectively (Fig. 
6B). 

 
CONCLUSION 

 
The cadmium doped tin oxide (Cd:SnO2) thin films 

are deposited on glass and Si(100) substrates with 
different Cd concentrations. The XRD show an 
amorphous structure for the thin films deposited on 
glass substrate. However, the tetragonal crystalline 
structure with preferential orientation along (310) plane 
is revealed for the films elaborated on Si(100) substrate. 
The all obtained thin films are transparent with optical 
transmittance ~86%. From the optical studies it is 
observed that the band gap energy decreases from 3.60 
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eV to 3.31 eV with increase of Cd concentration. AFM 
images show that the surface roughness is reduced to 
lower values with addition of Cd. The measured 
refractive index reveals that the Cd:SnO2 films grown 
by the sol-gel dip coating technique are suitable for 
interest applications such as optoelectronic devices.  
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